1
|
Nazar M, Ahmad A, Hussain SMS, Moniruzzaman M. Formulation and Optimization of Effective Oil Spill Dispersants Composed of Surface-Active Ionic Liquids and Nonionic Surfactants. ACS OMEGA 2024; 9:30636-30644. [PMID: 39035979 PMCID: PMC11256331 DOI: 10.1021/acsomega.4c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
The use of chemical dispersants to remove oil spills in aquatic environments raises serious concerns, including heightened toxicity and limited biodegradability, which diminish their effectiveness. This study aimed to develop an environmentally friendly formulation by combining two nonionic surfactants (Tween 80, Span 80) with two surface-active ionic liquids (SAILs): 1-butyl-3-methylimidazolium lauroyl sarcosinate [Bmim][Lausar] and choline myristate [Cho][Mys], to remediate crude oil spill. The performance of the formulation was evaluated by its emulsion stability, surface tension, interfacial tension (IFT), and effectiveness. The toxicity and biodegradability of the formulation were also assessed to ensure their safe application in aquatic environments. The formulation (F9) exhibited the most stable emulsion, maintaining stability even after 5 h with a critical micelle concentration (CMC) of 3.52 mM. The efficiency of the formulation in dispersing various crude oils (Arab, Ratawi, and Doba) ranged from 70.12 to 93.72%. Acute toxicity tests conducted on zebrafish demonstrated that the formulation, with an LC50 value of 450 mg L-1, exhibited practically nontoxicity after 96 h. The formulation showed rapid biodegradability, exceeding 60% within a 28-day testing period. This research presents a promising approach for synthesizing the green formulation which can contribute to mitigating the environmental impacts of oil spills and enhancing the efficiency of cleanup operations.
Collapse
Affiliation(s)
- Masooma Nazar
- Center
for Integrative Petroleum Research (CIPR), College of Petroleum Engineering
and Geosciences, King Fahd University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Aqeel Ahmad
- Interdisciplinary
Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Syed Muhammad Shakil Hussain
- Center
for Integrative Petroleum Research (CIPR), College of Petroleum Engineering
and Geosciences, King Fahd University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Moniruzzaman
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, Perak 32610, Malaysia
| |
Collapse
|
2
|
Nazar M, Shah MUH, Ahmad A, Yahya WZN, Goto M, Moniruzzaman M. Ionic Liquid and Tween-80 Mixture as an Effective Dispersant for Oil Spills: Toxicity, Biodegradability, and Optimization. ACS OMEGA 2022; 7:15751-15759. [PMID: 35571843 PMCID: PMC9096972 DOI: 10.1021/acsomega.2c00752] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/29/2022] [Indexed: 05/07/2023]
Abstract
Chemical dispersants are used extensively for oil spill remediation. Most of these dispersants are composed of a mixture of surfactants and organic solvents, which raises concerns about aquatic toxicity and environmental impact. In this study, the toxicity and biodegradability of an oil spill dispersant composed of the surface-active ionic liquid 1-butyl-3-methylimidazolium lauroyl sarcosinate [Bmim][Lausar] and Tween-80 were investigated. In addition, important environmental factors including salinity, temperature, and wave-mixing energy were optimized to obtain maximum dispersion effectiveness. The acute toxicity against zebrafish (Danio rerio) showed that the developed dispersant was practically non-toxic with a median lethal dose of more than 100 mg L-1 after 96 h. The dispersant also demonstrated outstanding biodegradability of 66% after 28 days. A model was developed using a response surface methodology that efficiently (R 2 = 0.992) related the salinity, temperature, and wave-mixing energy of seawater to dispersion effectiveness. The system was then optimized, and a high dispersion effectiveness of 89.70% was obtained with an experimental error of less than 2%. Our findings suggest that the surface-active ionic liquid and Tween-80 mixture could be a viable alternative to toxic chemical dispersants for oil spill remediation.
Collapse
Affiliation(s)
- Masooma Nazar
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, 32610 Perak, Malaysia
| | - Mansoor Ul Hassan Shah
- Department
of Chemical Engineering, University of Engineering
and Technology, 25120 Peshawar, Pakistan
| | - Aqeel Ahmad
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, 32610 Perak, Malaysia
| | - Wan Zaireen Nisa Yahya
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, 32610 Perak, Malaysia
- Center
of Research in Ionic Liquids (CORIL), Universiti
Teknologi PETRONAS, Bandar Seri
Iskandar, 32610 Perak, Malaysia
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744,
Moto-oka, 819-0395 Fukuoka, Japan
| | - Muhammad Moniruzzaman
- Department
of Chemical Engineering, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar, 32610 Perak, Malaysia
- Center
of Research in Ionic Liquids (CORIL), Universiti
Teknologi PETRONAS, Bandar Seri
Iskandar, 32610 Perak, Malaysia
| |
Collapse
|
3
|
Zerebecki RA, Heck KL, Valentine JF. Biodiversity influences the effects of oil disturbance on coastal ecosystems. Ecol Evol 2022; 12:e8532. [PMID: 35127038 PMCID: PMC8796919 DOI: 10.1002/ece3.8532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 01/16/2023] Open
Abstract
Biodiversity can enhance the response of ecosystems to disturbance. However, whether diversity can reduce the ecological effect of human-induced novel and extreme disturbances is unclear. In April 2010, the Deepwater Horizon (DwH) platform exploded, allowing an uncontrolled release of crude oil into the northern Gulf of Mexico. Initial surveys following the spill found that ecological impacts on coastal ecosystems varied greatly across habitat-type and trophic group; however, to date, few studies have tested the influence of local biodiversity on these responses. We used a meta-analytic approach to synthesize the results of 5 mesocosm studies that included 10 independent oil experiments and 5 independent oil + dispersant experiments. We tested whether biodiversity increased the resistance and/or resilience of coastal ecosystems to oil disturbance and whether a biodiversity effect depended on the type of diversity present (taxonomic or genetic) and/or the response type measured (population, community, or ecosystem level). We found that diversity can influence the effects of oiling, but the direction and magnitude of this diversity effect varied. Diversity reduced the negative impact of oiling for within-trophic-level responses and tended to be stronger for taxonomic than genetic diversity. Further, diversity effects were largely driven by the presence of highly resistant or quick to recover taxa and genotypes, consistent with the insurance hypothesis. However, we found no effect of diversity on the response to the combination of oil and dispersant exposure. We conclude that areas of low biodiversity may be particularly vulnerable to future oil disturbances and provide insight into the benefit of incorporating multiple measures of diversity in restoration projects and management decisions.
Collapse
Affiliation(s)
- Robyn A. Zerebecki
- Dauphin Island Sea LabDauphin IslandAlabamaUSA
- Present address:
University of LouisianaLafayetteLouisinaUSA
| | | | | |
Collapse
|
4
|
Gan N, Martin L, Xu W. Impact of Polycyclic Aromatic Hydrocarbon Accumulation on Oyster Health. Front Physiol 2021; 12:734463. [PMID: 34566698 PMCID: PMC8461069 DOI: 10.3389/fphys.2021.734463] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHs via photooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world.
Collapse
Affiliation(s)
- Nin Gan
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
5
|
Metaplasia of respiratory and digestive tissues in the eastern oyster Crassostrea virginica associated with the Deepwater Horizon oil spill. PLoS One 2021; 16:e0247739. [PMID: 34492016 PMCID: PMC8423294 DOI: 10.1371/journal.pone.0247739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Metaplasia is a well documented and deleterious effect of crude oil components on oysters. This reversible transformation of one cell type to another is a common response to petroleum-product exposure in molluscs. It has been shown experimentally in previous work that eastern oysters (Crassostrea virginica) exposed to petroleum products will exhibit metaplasia of digestive tissues. Here we document for the first time that wild adult oysters inhabiting coastal waters in the northern Gulf of Mexico during and in the aftermath of the Deepwater Horizon oil spill (2010) exhibited metaplasia in both ctenidial (respiratory and suspension feeding) and digestive tract tissues at significantly higher frequencies than geographic controls of C. virginica from Chesapeake Bay. Metaplasia included the loss of epithelial cilia, transformations of columnar epithelia, hyperplasia and reduction of ctenidial branches, and vacuolization of digestive tissues. Evidence for a reduction of metaplasia following the oil spill (2010-2013) is suggestive but equivocal.
Collapse
|
6
|
Baharuddin SH, Mustahil NA, Reddy AVB, Abdullah AA, Mutalib MIA, Moniruzzaman M. Development, formulation and optimization of a novel biocompatible ionic liquids dispersant for the effective oil spill remediation. CHEMOSPHERE 2020; 249:126125. [PMID: 32058133 DOI: 10.1016/j.chemosphere.2020.126125] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 05/23/2023]
Abstract
The application of chemical dispersants in marine oil spill remediation is comprehensively reported across the globe. But, the augmented toxicity and poor biodegradability of reported chemical dispersants have created necessity for their replacement with the bio-based green dispersants. Therefore, in the present study, we have synthesized five ionic liquids (ILs) namely 1-butyl-3-methylimidazolium lauroylsarcosinate, 1,1'-(1,4-butanediyl)bis(1-H-pyrrolidinium) dodecylbenzenesulfonate, tetrabutylammonium citrate, tetrabutylammonium polyphosphate and tetrabutylammonium ethoxylate oleyl ether glycolate, and formulated a water based ILs dispersant combining the synthesized ILs at specified compositions. The effectiveness of formulated ILs dispersant was found between 70.75% and 94.71% for the dispersion of various crude oils ranging from light to heavy. Further, the acute toxicity tests against zebra fish and grouper fish have revealed the practically non-toxic behaviour of formulated ILs dispersant with LC50 value greater than 100 ppm after 96 h. In addition, the formulated ILs dispersant has provided excellent biodegradability throughout the test period. Overall, the formulated new ILs dispersant is deemed to facilitate environmentally benign oil spill remediation and could effectively substitute the use of hazardous chemical dispersants in immediate future.
Collapse
Affiliation(s)
- Siti Hawatulaila Baharuddin
- Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
| | - Noorul Adawiyah Mustahil
- Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
| | | | - Atikah Aini Abdullah
- Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
| | - Mohamed Ibrahim Abdul Mutalib
- Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
| | - Muhammad Moniruzzaman
- Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia.
| |
Collapse
|