1
|
Eid AM, Selim A, Khaled M, Elfiky AA. Hybrid Virtual Screening Approach to Predict Novel Natural Compounds against HIV-1 CCR5. J Phys Chem B 2024; 128:7086-7101. [PMID: 39016126 DOI: 10.1021/acs.jpcb.4c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection continues to pose a major global health challenge. HIV entry into host cells via membrane fusion mediated by the viral envelope glycoprotein gp120/gp41 is a key step in the HIV life cycle. CCR5, expressed on CD4+ T cells and macrophages, acts as a coreceptor facilitating HIV-1 entry. The CCR5 antagonist maraviroc is used to treat HIV infection. However, it can cause adverse effects and has limitations such as only inhibiting CCR5-tropic viruses. There remains a need to develop alternative CCR5 inhibitors with improved safety profiles. PROBLEM STATEMENT Natural products may offer advantages over synthetic inhibitors including higher bioavailability, binding affinity, effectiveness, lower toxicity, and molecular diversity. However, screening the vast chemical space of natural compounds to identify novel CCR5 inhibitors presents challenges. This study aimed to address this gap through a hybrid ligand-based pharmacophore modeling and molecular docking approach to virtually screen large natural product databases. METHODS A reliable pharmacophore model was developed based on 311 known CCR5 antagonists and validated against an external data set. Five natural product databases containing over 306,000 compounds were filtered based on drug-likeness rules. The validated pharmacophore model screened the databases to identify 611 hits. Key residues of the CCR5 receptor crystal structure were identified for docking. The top hits were docked, and interactions were analyzed. Molecular dynamics simulations were conducted to examine complex stability. Computational prediction evaluated pharmacokinetic properties. RESULTS Three compounds exhibited similar interactions and binding energies to maraviroc. MD simulations demonstrated complex stability comparable to maraviroc. One compound showed optimal predicted absorption, minimal metabolism, and a lower likelihood of interactions than maraviroc. CONCLUSION This computational screening workflow identified three natural compounds with promising CCR5 inhibition and favorable pharmacokinetic profiles. One compound emerged as a lead based on bioavailability potential and minimal interaction risk. These findings present opportunities for developing alternative CCR5 antagonists and warrant further experimental investigation. Overall, the hybrid virtual screening approach proved effective for mining large natural product spaces to discover novel molecular entities with drug-like properties.
Collapse
Affiliation(s)
- Abdulrahman M Eid
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abdallah Selim
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed Khaled
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abdo A Elfiky
- Biophysics Dept. Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
2
|
Stumper A, Alloy LB. Associations Between Pubertal Stage and Depression: A Systematic Review of the Literature. Child Psychiatry Hum Dev 2023; 54:312-339. [PMID: 34529199 DOI: 10.1007/s10578-021-01244-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/26/2022]
Abstract
The current article systematically reviews the literature and provides results from 36 studies testing the relation between pubertal stage and depression, as well as moderators and mediators of this relation. Results indicate that there is a significant relation between advancing pubertal stage and depression among girls, and this effect is strongest among White girls. Among boys, risk for depression does not increase with pubertal stage. Importantly, gonadal development appears to be driving the pubertal stage effect. Increasing hormone concentrations, shared environmental stressors, and body esteem appear to be mechanisms of this relation; increases in nonshared environmental stressors (negative life events, peer victimization) moderate the relation between pubertal stage and depression. Inconsistencies in findings across studies can be explained by methodological differences. Future work on this topic should control for age, examine differences by sex, and utilize within-person analyses to evaluate the effect of pubertal stage on depression over time.
Collapse
Affiliation(s)
- Allison Stumper
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13th St, Philadelphia, PA, 19122, USA.
| | - Lauren B Alloy
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13th St, Philadelphia, PA, 19122, USA
| |
Collapse
|
3
|
Orkin C, Cahn P, Castagna A, Emu B, Harrigan P, Kuritzkes DR, Nelson M, Schapiro J. Opening the door on entry inhibitors in HIV: Redefining the use of entry inhibitors in heavily treatment experienced and treatment-limited individuals living with HIV. HIV Med 2022; 23:936-946. [PMID: 35293094 PMCID: PMC9546304 DOI: 10.1111/hiv.13288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Entry inhibitors are a relatively new class of antiretroviral therapy and are typically indicated in heavily treatment experienced individuals living with HIV. Despite this, there is no formal definition of 'heavily treatment experienced'. Interpretation of this term generally includes acknowledgement of multidrug resistance and reflects the fact that patients in need of further treatment options may have experienced multiple lines of therapy. However, it fails to recognize treatment limiting factors including contraindications, age-associated comorbidities, and difficulty adhering to regimens. METHODS This manuscript follows a roundtable discussion and aims to identify the unmet needs of those living with HIV who are in need of further treatment options, to broaden the definition of heavily treatment experienced and to clarify the use of newer agents, with an emphasis on the potential role of entry inhibitors, in this population. RESULTS/CONCLUSIONS Within the entry inhibitor class, mechanisms of action differ between agents; resistance to one subclass does not confer resistance to others. Combinations of entry inhibitors should be considered in the same regimen, and if lack of response is seen to one entry inhibitor another can be tried. When selecting an entry inhibitor, physicians should account for patient preferences and needs as well as agent-specific clinical characteristics. Absence of documented multidrug resistance should not exclude an individual from treatment with an entry inhibitor; entry inhibitors are a valuable treatment option for all individuals who are treatment limited or treatment exhausted. We should advocate for additional clinical trials that help define the role of entry inhibitors in people with exhausted/limited ART options other than drug resistance.
Collapse
Affiliation(s)
| | - Pedro Cahn
- Fundacion HuespedBuenos AiresArgentina
- Buenos Aires University Medical SchoolBuenos AiresArgentina
| | - Antonella Castagna
- Vita‐Salute San Raffaele UniversitySan Raffaele Scientific InstituteMilanItaly
| | - Brinda Emu
- Yale School of MedicineNew HavenConnecticutUSA
| | | | | | | | | |
Collapse
|
4
|
Enhancement of CD4 Binding, Host Cell Entry, and Sensitivity to CD4bs Antibody Inhibition Conferred by a Natural but Rare Polymorphism in the HIV-1 Envelope. J Virol 2022; 96:e0185121. [PMID: 35862673 PMCID: PMC9327689 DOI: 10.1128/jvi.01851-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.
Collapse
|
5
|
Lewis ME, Simpson P, Mori J, Jubb B, Sullivan J, McFadyen L, van der Ryst E, Craig C, Robertson DL, Westby M. V3-Loop genotypes do not predict maraviroc susceptibility of CCR5-tropic virus or clinical response through week 48 in HIV-1-infected, treatment-experienced persons receiving optimized background regimens. Antivir Chem Chemother 2021; 29:20402066211030380. [PMID: 34343443 PMCID: PMC8369958 DOI: 10.1177/20402066211030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viruses from 15 of 35 maraviroc-treated participants with virologic failure and CCR5-tropic (R5) virus in the MOTIVATE studies at Week 24 had reduced maraviroc susceptibility. On-treatment amino acid changes were observed in the viral envelope glycoprotein 120 third variable (V3)-loop stems and tips and differed between viruses. No amino acid change reliably predicted reduced susceptibility, indicating that resistance was genetic context-dependent. Through Week 24, poor adherence was associated with maraviroc-susceptible virologic failure, whereas reduced maraviroc susceptibility was associated with suboptimal background regimen activity, highlighting the importance of overall regimen activity and good adherence. Predictive values of pretreatment V3-loop sequences containing these Week 24 mutations or other variants present at >3% in pretreatment viruses of participants with virologic failure at Week 48 were retrospectively assessed. Week 48 clinical outcomes were evaluated for correlates with pretreatment V3-loop CCR5-tropic sequences from 704 participants (366 responders; 338 virologic failures [83 with R5 virus with maraviroc susceptibility assessment]). Seventy-five amino acid variants with >3% prevalence were identified among 23 V3-loop residues. Previously identified variants associated with resistance in individual isolates were represented, but none were associated reliably with virologic failure alone or in combination. Univariate analysis showed virologic-failure associations with variants 4L, 11R, and 19S (P < 0.05). However, 11R is a marker for CXCR4 tropism, whereas neither 4L nor 19S was reliably associated with reduced maraviroc susceptibility in R5 failure. These findings from a large study of V3-loop sequences confirm lack of correlation between V3-loop genotype and clinical outcome in participants treated with maraviroc.Clinical trial registration numbers (ClinicalTrials.gov): NCT00098306 and NCT00098722.
Collapse
Affiliation(s)
- M E Lewis
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,The Research Network Ltd, Sandwich, Kent, UK
| | - P Simpson
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,AstraZeneca, Cambridge, UK
| | - J Mori
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,hVIVO, Queen Mary BioEnterprise Innovation Centre, London, UK
| | - B Jubb
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK
| | - J Sullivan
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,Cytel, London, UK
| | - L McFadyen
- Pfizer Inc, Pharmacometrics, Sandwich, UK
| | - E van der Ryst
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,The Research Network Ltd, Sandwich, Kent, UK
| | - C Craig
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,The Research Network Ltd, Sandwich, Kent, UK
| | - D L Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - M Westby
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,Centauri Therapeutics Limited, Discovery Park, Kent, UK
| |
Collapse
|
6
|
Lewis ME, Jubb B, Simpson P, Lopatukhin A, Kireev D, Bobkova M, Craig C, van der Ryst E, Westby M, Butler SL. Highly prevalent Russian HIV-1 V3-loop sequence variants are susceptible to maraviroc. Antivir Chem Chemother 2021; 29:20402066211025156. [PMID: 34160290 PMCID: PMC8236768 DOI: 10.1177/20402066211025156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Maraviroc inhibits CCR5-tropic HIV-1 across different subtypes in vitro and has demonstrated efficacy in clinical trials. V3-loop amino acid variants observed in individual maraviroc-resistant viruses have not been found to be predictive of reduced susceptibility. Sequence-database searches have demonstrated that approximately 7.3% of viruses naturally encode these variants, raising concerns regarding potential pre-existing resistance. A study from Russia reported that combinations of these same amino acids are present in the V3 loops of the Russian variant subtype A (IDU-A, now A6) with a much greater prevalence (range: 74.4%-92.3%) depending on the combination. However, these studies and database searches did not include phenotypic evaluation. METHODS Sixteen Russian HIV-1 isolates (including sub-subtype A6 viruses) were assessed for V3 loop sequence and phenotypic susceptibility to maraviroc. RESULTS All 12 of the A6 viruses and 2/4 subtype B isolates encoded V3-loop variants that have previously been identified in individual virus isolates with reduced susceptibility to maraviroc. However, despite the prevalence of these V3-loop amino acid variants among the tested viruses, phenotypic sensitivity to maraviroc was observed in all instances. Similarly, reduced susceptibility to maraviroc was not found in virus from participants who experienced virologic failure in a clinical study of maraviroc in Russia (A4001101, [NCT01275625]). DISCUSSION Altogether, these data confirm that the presence of individual or combinations of V3-loop amino acid residues in sub-subtype A6 viruses alone does not predict natural resistance to maraviroc and that V3-loop genotype analysis of R5 virus prior to treatment is not helpful in predicting clinical outcome.
Collapse
Affiliation(s)
- ME Lewis
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
- The Research Network Ltd, Sandwich, UK
| | - B Jubb
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
| | - P Simpson
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
| | - A Lopatukhin
- HIV Research Group, Central Research Institute of Epidemiology, Moscow, Russia
| | - D Kireev
- HIV Research Group, Central Research Institute of Epidemiology, Moscow, Russia
| | - M Bobkova
- Laboratory of Virus Leucosis, Ivanovsky Institute of Virology, Moscow, Russia
| | - C Craig
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
- The Research Network Ltd, Sandwich, UK
| | - E van der Ryst
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
- The Research Network Ltd, Sandwich, UK
| | - M Westby
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
| | - SL Butler
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
| |
Collapse
|
7
|
Beyzaei H, Malekraisi F, Aryan R, Ghasemi B. Green aqueous synthesis and antimicrobial evaluation of 3,5-disubstituted 1,2,4-triazoles. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02684-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Miao M, De Clercq E, Li G. Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol 2020; 16:11-30. [PMID: 31903790 DOI: 10.1080/17425255.2020.1711884] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Chemokine receptors are important therapeutic targets for the treatment of many human diseases. This study will provide an overview of approved chemokine receptor antagonists and promising candidates in advanced clinical trials.Areas covered: We will describe clinical aspects of chemokine receptor antagonists regarding their clinical efficacy, mechanisms of action, and re-purposed applications.Expert opinion: Three chemokine antagonists have been approved: (i) plerixafor is a small-molecule CXCR4 antagonist that mobilizes hematopoietic stem cells; (ii) maraviroc is a small-molecule CCR5 antagonist for anti-HIV treatment; and (iii) mogamulizumab is a monoclonal-antibody CCR4 antagonist for the treatment of mycosis fungoides or Sézary syndrome. Moreover, phase 3 trials are ongoing to evaluate many potent candidates, including CCR5 antagonists (e.g. leronlimab), dual CCR2/CCR5 antagonists (e.g. cenicriviroc), and CXCR4 antagonists (e.g. balixafortide, mavorixafor, motixafortide). The success of chemokine receptor antagonists depends on the selective blockage of disease-relevant chemokine receptors which are indispensable for disease progression. Although clinical translation has been slow, antagonists targeting chemokine receptors with multifaced functions offer the potential to treat a broad spectrum of human diseases.
Collapse
Affiliation(s)
- Miao Miao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Hunan, China
| | - Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Guangdi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Hunan, China
| |
Collapse
|
9
|
Jubb B, Lewis M, McFadyen L, Simpson P, Mori J, Chan P, Weatherley B, van der Ryst E, Westby M, Craig C. Incidence of CXCR4 tropism and CCR5-tropic resistance in treatment-experienced participants receiving maraviroc in the 48-week MOTIVATE 1 and 2 trials. Antivir Chem Chemother 2019; 27:2040206619895706. [PMID: 31856576 PMCID: PMC6931239 DOI: 10.1177/2040206619895706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Maraviroc blocks HIV-1 entry into CD4+ cells by interrupting the interaction
between viral gp120 and cell-surface CCR5. Resistance to CCR5
antagonist–mediated inhibition can develop by unmasking pre-existing CXCR4-using
virus or through selection of CCR5-tropic resistant virus, characterized by
plateaus in maximum percent inhibition <95%. Here, we examine viral escape in
maraviroc-treated participants during virologic failure through Week 48 in the
MOTIVATE 1 and 2 trials. Resistance was assessed relative to number of active
drugs in participants’ optimized background therapy, pharmacokinetic adherence
markers, Baseline demographic data, HIV-1 RNA and CD4+ counts. For participants
with R5 virus confirmed (post hoc) at Screening, Baseline
genotypic weighted optimized background therapy susceptibility scores (gwOBTSS)
were assigned where possible. Through Week 48, 219/392 (56%) participants with
an assigned gwOBTSS achieved a virologic response. Of those remaining, 48/392
(12%) had CXCR4-using virus; 58/392 (15%) had R5 virus (maraviroc sensitive:
n = 35/392, 9%; maraviroc resistant:
n = 18/392, 5%; undeterminable: n = 5/392, 1%)
and 67/392 (17%) had no failure tropism result. When optimized background
therapy provided limited support to maraviroc (gwOBTSS <2), 143/286 (50%)
responded to therapy, while 76/106 (72%) participants with gwOBTSS ≥2 responded
(p < 0.001). Resistance rates were highest for
participants with gwOBTSS <2, accounting for 45/48 (94%) of total CXCR4-using
emergence and 18/18 (100%) of total CCR5-tropic resistance. R5 viruses from
participants with gwOBTSS ≥2 (n = 10) were exclusively
maraviroc sensitive; five of these participants had pharmacokinetic and/or
pill-count markers of non-adherence. When co-administered with a fully active
background regimen, maraviroc did not readily generate resistance in the
clinical setting.
Collapse
Affiliation(s)
- Becky Jubb
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA
| | - Marilyn Lewis
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA.,The Research Network, Sandwich, UK
| | | | - Paul Simpson
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA
| | - Julie Mori
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA
| | | | | | - Elna van der Ryst
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA.,The Research Network, Sandwich, UK
| | - Mike Westby
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA
| | - Charles Craig
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA.,The Research Network, Sandwich, UK
| |
Collapse
|
10
|
Collier DA, Monit C, Gupta RK. The Impact of HIV-1 Drug Escape on the Global Treatment Landscape. Cell Host Microbe 2019; 26:48-60. [PMID: 31295424 DOI: 10.1016/j.chom.2019.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rising prevalence of HIV drug resistance (HIVDR) could threaten gains made in combating the HIV epidemic and compromise the 90-90-90 target proposed by United Nations Programme on HIV/AIDS (UNAIDS) to have achieved virological suppression in 90% of all persons receiving antiretroviral therapy (ART) by the year 2020. HIVDR has implications for the persistence of HIV, the selection of current and future ART drug regimens, and strategies of vaccine and cure development. Focusing on drug classes that are in clinical use, this Review critically summarizes what is known about the mechanisms the virus utilizes to escape drug control. Armed with this knowledge, strategies to limit the expansion of HIVDR are proposed.
Collapse
Affiliation(s)
- D A Collier
- Division of Infection and Immunity, University College London, London, UK
| | - C Monit
- Division of Infection and Immunity, University College London, London, UK
| | - R K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|