1
|
Lathakumari RH, Vajravelu LK, Thulukanam J, Narasimhan AK. Next-Gen Nano Biosensor Technologies to Monitor Carbapenem Resistance for Personalized Medicine. Indian J Microbiol 2025; 65:277-296. [PMID: 40371034 PMCID: PMC12069791 DOI: 10.1007/s12088-024-01337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/12/2024] [Indexed: 05/16/2025] Open
Abstract
Carbapenem resistance represents a pressing public health concern, posing significant challenges due to limited treatment options and escalating mortality rates. In India, the prevalence of carbapenem resistance among Enterobacteriaceae ranges between 18 to 31%, causing severe infections such as bloodstream infections, pneumonia, urinary tract infections, and intra-abdominal infections. Accurate and timely diagnosis, particularly for Enterobacteriaceae producing carbapenemase, is crucial for effective clinical prophylaxis of critical care patients as they are considered as a last resort of therapy. Various genotypic and non-genotypic detection methods have been developed over the past decade, their limitations in terms of sensitivity and specificity have led the exploration of innovative technologies. Advanced opportunities for carbapenem resistance detection using microfluidic-based biosensors have miniaturized various biomedical devices. This enables the use of less sample and reagents, cheap pricing, automation, screening, and improved detection. Despite ongoing research and development, the adoption of these biosensors in healthcare settings is limited due to the lack of awareness and understanding of their efficiency. Therefore, this review primarily focuses on the advantages and limitations of all biosensor-based devices over existing methods for the detection of carbapenem resistance in gram negative bacilli. These biosensors represent substantial advancements in combating carbapenem resistance, providing promise for more reliable and accurate diagnostic techniques that may eventually improve patient care and infection control.
Collapse
Affiliation(s)
- Rahul Harikumar Lathakumari
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Leela Kakithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Jayaprakash Thulukanam
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Ashwin Kumar Narasimhan
- Advanced Nano-Theranostics (ANTs) Research Group, Biomaterials Lab, Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Bouzada FM, Mestre B, Vaquer A, Tejada S, de la Rica R. Detecting Respiratory Pathogens for Diagnosing Lower Respiratory Tract Infections at the Point of Care: Challenges and Opportunities. BIOSENSORS 2025; 15:129. [PMID: 40136926 PMCID: PMC11940763 DOI: 10.3390/bios15030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Lower respiratory tract infections (LRTIs) are a leading cause of mortality worldwide, claiming millions of lives each year and imposing significant healthcare costs. Accurate detection of respiratory pathogens is essential for the effective management of LRTIs. However, this process often relies on sputum analysis, which requires extensive pretreatment steps. The viscous nature and complex composition of sputum present additional challenges, especially in settings where a rapid diagnosis at the point of care is essential. In this review, we describe the main types of LRTI, highlighting different patient care pathway and points of care. We review current methods for liquefying sputum samples and provide an overview of current commercially available diagnostic tools used in hospitals for LRTI detection. Furthermore, we critically review recent advancements in the literature focused on detecting respiratory pathogens and mechanisms of antimicrobial resistance in sputum, including nucleic acid amplification tests, immunoassays and other innovative approaches. Throughout the paper, we highlight challenges and opportunities associated with developing new biosensor technologies tailored for detecting respiratory pathogens in lower respiratory specimens. By shedding light on these pressing issues, we aim to inspire scientific community to create innovative diagnostic tools to address the urgent healthcare burden of lung diseases.
Collapse
Affiliation(s)
- Francisco M. Bouzada
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
| | - Bartomeu Mestre
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Sofía Tejada
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (F.M.B.); (B.M.); (R.d.l.R.)
- (CIBERINFEC)—Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Ain NU, Elton L, Sadouki Z, McHugh TD, Riaz S. Exploring New Delhi Metallo Beta Lactamases in Klebsiella pneumoniae and Escherichia coli: genotypic vs. phenotypic insights. Ann Clin Microbiol Antimicrob 2025; 24:12. [PMID: 39923059 PMCID: PMC11806598 DOI: 10.1186/s12941-025-00775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacterales pose a serious clinical threat, particularly in high-burden settings of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae (CREK), where rapid detection tools are essential to aid patient management. In this study, we focused on blaNDM, the most frequently reported carbapenemase in the region, and evaluated a combined phenotypic (lateral flow) and genotypic (PCR and WGS) approach for its detection. This research underscores the utility of lateral flow assays as a practical alternative to resource-intensive genotypic methods, offering a scalable solution for settings with limited laboratory capacity. METHOD One hundred seventy-seven extensively drug-resistant strains were characterized using MALDI-TOF. Isolates were analyzed to detect Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae (CREK) using disk diffusion, MIC test, and PCR targeting blaNDM. Antibiotic susceptibility patterns were analyzed and visualized using single-linkage hierarchical clustering, with results displayed on a permuted heat map. Immunochromatographic assay, RESIST-5 O.K.N.V.I (Coris Bioconcept®) was used for CREK isolates [(n = 17), positive and negative)] and Oxford Nanopore Sequencing was conducted on subsets [(n = 5) blaNDM-positive co-producers of blaNDM and blaOXA, and (n = 2) blaNDM-negative blaOXA producers) to evaluate the reliability of phenotypic and genotypic tests. RESULT Most of the XDR strains (90%) were CREK, with K. pneumoniae (71.2%) more prevalent than E. coli (28.7%) (p < 0.05). All CREK strains exhibited complete resistance (100%) to multiple antibiotics with 66% showing sensitivity to levofloxacin. Furthermore, K. pneumoniae (57.8%) had higher blaNDM gene prevalence than E. coli (36.9%). Among blaNDM-positive CREK, lateral flow assay revealed approximately half of each bacteria type co-produced blaOXA (E.coli, 52.9%), and (K. pneumoniae, 47%). For blaNDM-negative strains, blaOXA was more prevalent in K. pneumoniae (82.35%) than E. coli (41%) (p < 0.05). Comparing phenotypic to genotypic assays, E. coli showed 100% (CI 80.49 - 100%) sensitivity and specificity with a high Kappa agreement coefficient (0.91) (CI 95% 0.661-1, p < 0.01), whereas K. pneumoniae assays had lower sensitivity and specificity (40%) (CI 5.27 - 85.34%), with a lower Kappa agreement coefficient (0.20) (CI 95% 0.104-0.298, p < 0.01). CONCLUSION This study demonstrates the value of the RESIST-5 O.K.N.V.I. lateral flow assay as a rapid and reliable diagnostic tool for detecting blaNDM in Escherichia coli, with strong agreement to PCR and WGS. While performance for Klebsiella pneumoniae was lower, the assay offers a practical alternative in resource-limited settings, aiding antimicrobial stewardship and improving diagnostic capacities in high-burden regions.
Collapse
Affiliation(s)
- Noor Ul Ain
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan
- Centre for Clinical Microbiology, University College London, London, UK
| | - Linzy Elton
- Centre for Clinical Microbiology, University College London, London, UK
| | - Zahra Sadouki
- Centre for Clinical Microbiology, University College London, London, UK
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London, London, UK
| | - Saba Riaz
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
- Citilab and Research Center, Lahore, Pakistan.
- Centre for Clinical Microbiology, University College London, London, UK.
| |
Collapse
|
4
|
Epanchintseva AV, Gorbunova EA, Nekrasov MD, Poletaeva JE, Pyshnaya IA. An Approach to Identifying Single-Nucleotide Mutations Using Noncovalent Associates of Gold Nanoparticles with Fluorescently Labeled Oligonucleotides. Int J Mol Sci 2024; 25:13230. [PMID: 39768995 PMCID: PMC11675405 DOI: 10.3390/ijms252413230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Globally, widespread tuberculosis is one of the acute problems of healthcare. Drug-resistant forms of tuberculosis require a personalized approach to treatment. Currently, rapid methods for detecting drug resistance of Mycobacterium tuberculosis (MTB) to some antituberculosis drugs are often used and involve optical, electrochemical, or PCR-based assays. Despite the large number of these assays, it is necessary to develop new tests (for drug-resistant MTB strains) that are structurally simple and do not require specialized equipment. Colorimetric assays involving a colloidal solution of gold nanoparticles (AuNPs) have good potential for the development of the needed diagnostic tools. Here, conditions were found for the formation of tandem duplexes between DNA probes and DNA targets, representing a part of MTB gene gyrA, either wildtype or containing a single-nucleotide polymorphism associated with fluoroquinolone resistance of MTB. Adsorption of the duplexes on AuNPs allowed to distinguish the two targets owing to the formation of nano-constructs of different structures. Interaction of DNA with AuNPs was analyzed by optical spectroscopy, dynamic light scattering, and transmission electron microscopy. A scheme is proposed for direct colorimetric detection of the fluoroquinolone-resistance-associated single-nucleotide polymorphism at a 2 nM concentration in a liquid system based on a shift of AuNPs' optical absorption maximum.
Collapse
Affiliation(s)
- Anna V. Epanchintseva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; (E.A.G.); (M.D.N.); (J.E.P.)
| | | | | | | | - Inna A. Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; (E.A.G.); (M.D.N.); (J.E.P.)
| |
Collapse
|
5
|
Patnaik N, Orekonday N, Dey RJ. Isothermal recombinase polymerase amplification and silver nanoparticle assay: a sustainable approach for ultrasensitive detection of Klebsiella pneumoniae. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7242-7254. [PMID: 39323405 DOI: 10.1039/d4ay00993b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Our study addresses the urgent need for effective detection of Klebsiella pneumoniae, a recognized threat by the World Health Organization (WHO). Current challenges in managing K. pneumoniae infections include the lack of rapid and affordable detection tools, particularly in resource-limited point-of-care (POC) settings. To tackle this, we developed an innovative molecular detection pipeline combining three POC-compatible methods. Firstly, we employed Insta DNA™ card-based sample collection and DNA extraction for simplicity and ease of use. Next, we utilized recombinase polymerase amplification (RPA) targeting the Klebsiella hemolysin gene, khe, specific to the K. pneumoniae species complex (KpSC). Finally, we integrated a silver nanoparticle (AgNP) aggregation assay for visual detection, offering a rapid, sensitive, and specific method capable of detecting as few as ∼3 bacteria of K. pneumoniae within ∼45 minutes. This approach eliminates the need for complex equipment, making it highly suitable for field and resource-limited POC applications. Moreover, our method introduces an environmentally significant detection strategy. The method developed minimizes chemical reagent usage and reduces the carbon footprint associated with sample transportation. Furthermore, our method reduces waste compared to the traditional detection techniques, offering a safer alternative to ethidium bromide or other DNA dyes which are often genotoxic and mutagenic in nature. Silver nanoparticles, being environmentally safer, can also be recycled from the waste, contributing to sustainability in nanoparticle production and disposal. Overall, our technique presents a promising solution for detecting K. pneumoniae in various settings, including environmental, water, and food samples, as well as industrial or hospital effluents. By aligning with global efforts to improve public health and environmental sustainability, our approach holds significant potential for enhancing disease management and reducing environmental impact.
Collapse
Affiliation(s)
- Naresh Patnaik
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Telangana State 500078, India.
| | - Nidhi Orekonday
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Telangana State 500078, India.
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Telangana State 500078, India.
| |
Collapse
|
6
|
Gutiérrez-Santana JC, Rosas-Espinosa V, Martinez E, Casiano-García E, Coria-Jiménez VR. Metal Nanoparticle-Based Biosensors for the Early Diagnosis of Infectious Diseases Caused by ESKAPE Pathogens in the Fight against the Antimicrobial-Resistance Crisis. BIOSENSORS 2024; 14:339. [PMID: 39056615 PMCID: PMC11274948 DOI: 10.3390/bios14070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
The species included in the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and the genus Enterobacter) have a high capacity to develop antimicrobial resistance (AMR), a health problem that is already among the leading causes of death and could kill 10 million people a year by 2050. The generation of new potentially therapeutic molecules has been insufficient to combat the AMR "crisis", and the World Health Organization (WHO) has stated that it will seek to promote the development of rapid diagnostic strategies. The physicochemical properties of metallic nanoparticles (MNPs) have made it possible to design biosensors capable of identifying low concentrations of ESKAPE bacteria in the short term; other systems identify antimicrobial susceptibility, and some have been designed with dual activity in situ (bacterial detection and antimicrobial activity), which suggests that, in the near future, multifunctional biosensors could exist based on MNPs capable of quickly identifying bacterial pathogens in clinical niches might become commercially available. This review focuses on the use of MNP-based systems for the rapid and accurate identification of clinically important bacterial pathogens, exhibiting the necessity for exhaustive research to achieve these objectives. This review focuses on the use of metal nanoparticle-based systems for the rapid and accurate identification of clinically important bacterial pathogens.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Santana
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| | - Viridiana Rosas-Espinosa
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| | - Evelin Martinez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán C.P. 04960, Mexico;
| | - Esther Casiano-García
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán C.P. 04960, Mexico;
| | - Victor Rafael Coria-Jiménez
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| |
Collapse
|
7
|
Majumdar S, Gogoi D, Boruah PK, Thakur A, Sarmah P, Gogoi P, Sarkar S, Pachani P, Manna P, Saikia R, Chaturvedi V, Shelke MV, Das MR. Hexagonal Boron Nitride Quantum Dots Embedded on Layer-by-Layer Films for Peroxidase-Assisted Colorimetric Detection of β-Galactosidase Producing Pathogens. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26870-26885. [PMID: 38739846 DOI: 10.1021/acsami.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of β-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The β-galactosidase enzyme partially degrades β-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.
Collapse
Affiliation(s)
- Sristi Majumdar
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Devipriya Gogoi
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Purna K Boruah
- Department of Chemistry, Faculty of Science, Kyushu University 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ashutosh Thakur
- Coal and Energy Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyakhee Sarmah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Parishmita Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjib Sarkar
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyakshi Pachani
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Prasenjit Manna
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikash Chaturvedi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, MH 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjusha V Shelke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, MH 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash R Das
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Barani M, Fathizadeh H, Arkaban H, Kalantar-Neyestanaki D, Akbarizadeh MR, Turki Jalil A, Akhavan-Sigari R. Recent Advances in Nanotechnology for the Management of Klebsiella pneumoniae-Related Infections. BIOSENSORS 2022; 12:1155. [PMID: 36551122 PMCID: PMC9776335 DOI: 10.3390/bios12121155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Klebsiella pneumoniae is an important human pathogen that causes diseases such as urinary tract infections, pneumonia, bloodstream infections, bacteremia, and sepsis. The rise of multidrug-resistant strains has severely limited the available treatments for K. pneumoniae infections. On the other hand, K. pneumoniae activity (and related infections) urgently requires improved management strategies. A growing number of medical applications are using nanotechnology, which uses materials with atomic or molecular dimensions, to diagnose, eliminate, or reduce the activity of different infections. In this review, we start with the traditional treatment and detection method for K. pneumoniae and then concentrate on selected studies (2015-2022) that investigated the application of nanoparticles separately and in combination with other techniques against K. pneumoniae.
Collapse
Affiliation(s)
- Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan 7616916338, Iran
| | - Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, 72076 Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, 00014 Warsaw, Poland
| |
Collapse
|
9
|
Gong L, Jin Z, Liu E, Tang F, Yuan F, Liang J, Wang Y, Liu X, Wang Y. Highly Sensitive and Specific Detection of Mobilized Colistin Resistance Gene mcr-1 by CRISPR-Based Platform. Microbiol Spectr 2022; 10:e0188422. [PMID: 36043860 PMCID: PMC9602551 DOI: 10.1128/spectrum.01884-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 12/31/2022] Open
Abstract
Mobilized colistin resistance (mcr-1) gene mediated by plasmid can cause the speediness dissemination of colistin-resistant strains, which have given rise to a great threat to the treatment of human infection. Hence, a rapid and accurate diagnosis technology for detecting mcr-1 is essential for the control of resistance gene. Here, a recombinase polymerase amplification (RPA) coupled with CRISPR/Cas12a platform was established for rapid, sensitive, and specific detection of mcr-1 gene. The analytical sensitivity of our assay is 420 fg per reaction in pure mcr-1-positive isolates, and the threshold of this method in spiked clinical samples was down to 1.6 × 103 ~ 6.2 × 103 CFU/mL (1.6 ~ 6.2 CFU/reaction). Moreover, the RPA-CRISPR/Cas12a system perspicuously demonstrated no cross-reactivity with other resistant genes. The entire experimental process included rapid DNA extraction (15 min), RPA reaction (30 min), CRISPR/Cas12a cleavage (5 min), and fluorescence testing (<10 min), which could be completed within 60 min. In summary, the RPA-CRISPR/Cas12a assay designed here provides a rapid diagnostic way for monitoring mcr-1 in clinic and livestock farm. IMPORTANCE This study promises a rapid and accurate assay (RPA-CRISPR/Cas12a) for the surveillance of mcr-1 gene, which causes the efficacy loss of colistin in clinical treatments. In addition, the established method is fit for "on-site" surveillance especially.
Collapse
Affiliation(s)
- Lin Gong
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Zhengjiang Jin
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, China
| | - Ernan Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Fei Tang
- Institute of Environmental Medicine, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengyun Yuan
- Institute of Environmental Medicine, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiansheng Liang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Yimei Wang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xiaoli Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
10
|
Molecular Diagnostic Methods For The Detection of Leptospirosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a widespread infectious disease caused by the spirochete Leptospira. The clinical features of leptospirosis are fever, headache, vomiting, jaundice, and the acute form of the disease is commonly called Weil’s disease. The microscopic agglutination test (MAT) is a gold standard method used to detect leptospirosis. However, it requires 14 days of time and skilled personnel to detect leptospirosis. Various molecular methods were developed for the rapid detection process, including polymerase chain reaction (PCR), multiplex PCR, nested PCR, real-time PCR, and Loop-mediated isothermal amplification (LAMP). Other immuno-based biosensor kits are readily available for the diagnosis of leptospirosis. Though these methods claim to be highly sensitive and specific, each method has its drawbacks. This review discusses the different molecular diagnostic techniques applied for the diagnosis of leptospirosis; elaborating on each method’s sensitivity, specificity, and detection time and the different samples of water, blood, and urine used.
Collapse
|
11
|
De Falco M, De Felice M, Rota F, Zappi D, Antonacci A, Scognamiglio V. Next-generation diagnostics: augmented sensitivity in amplification-powered biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Gong L, Tang F, Liu E, Liu X, Xu H, Wang Y, Song Y, Liang J. Development of a loop-mediated isothermal amplification assay combined with a nanoparticle-based lateral flow biosensor for rapid detection of plasmid-mediated colistin resistance gene mcr-1. PLoS One 2021; 16:e0249582. [PMID: 33857193 PMCID: PMC8049234 DOI: 10.1371/journal.pone.0249582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
A loop-mediated isothermal amplification assay combined with a nanoparticle-based lateral flow biosensor (LAMP-LFB) was established for the rapid and accurate detection of the mobilized colistin resistance gene (mcr-1), which causes the loss of colistin antibacterial efficacy in clinical treatments. The amplification stage of the assay was completed in 60 min at 63°C, and the reaction products could be visually detected by employing the LFB, which provided a fast (within 2 min) and objective method to evaluate the amplification results. The LAMP assay amplified the target sequences of mcr-1 with high specificity. In pure strains, the detection limit of the LAMP-LFB assay was 360 fg plasmid DNA/reaction, and in spiked feces samples the value was approximately 6.3×103 CFU/mL (~6.3 CFU/reaction), which was tenfold more sensitive than the PCR assay. The results show that the developed LAMP-LFB assay will be a worthy tool for the simple, rapid, specific, and sensitive detection of mcr-1 gene in clinical settings and resource-limited areas.
Collapse
Affiliation(s)
- Lin Gong
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Fei Tang
- MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ernan Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Xiaoli Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Huiqiong Xu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Yimei Wang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Yadong Song
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Jiansheng Liang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
13
|
Chen X, Zhou Q, Dong S, Wang S, Liu R, Wu X, Li S. Multiple Cross Displacement Amplification Linked with Nanoparticles-Based Lateral Flow Biosensor in Screening of Hepatitis B Virus in Clinical Application. Infect Drug Resist 2021; 14:1219-1229. [PMID: 33790592 PMCID: PMC8007573 DOI: 10.2147/idr.s297645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Background Hepatitis B virus (HBV) is a common pathogen that predominantly causes severe liver disease, and remains one of a huge challenge worldwide, especially in many resource-constrained areas. Developing a low-cost, sensitive, specific, and rapid approach for screening HBV is critical for its treatment and prevention. In the current study, a novel molecular detection approach, multiple cross displacement amplification (MCDA) coupled with polymer nanoparticle-based lateral flow biosensor (MCDA-LFB), was applied for detection of HBV in blood samples. Methods HBV standard substance and clinical donor serum samples were collected and used for the establishment and confirmation of the HBV-MCDA-LFB assay. A set of 10 MCDA primers was designed according to HBV-specific gene S. The HBV-MCDA-LFB assay conditions, including genomic template concentration, MCDA reaction temperature and time were optimized. The sensitivity and specificity of the HBV-MCDA -LFB assay were evaluated in this report. The HBV-MCDA-LFB assay was applied to detect the HBV agent from clinical samples. Results The HBV-MCDA primers based on the S gene were valid for establishment of MCDA assay. The HBV-MCDA reaction with optimized conditions could be carried out at a constant temperature 64°C for 35 min. The whole process, including sample preparation (5 min), genomic template extraction (~30 min), MCDA amplification (35 min), and LFB reading (~2 min), could be completed within 80 min. The sensitivity of this assay was 5 IU per reaction. The specificity was 100% for HBV-MCDA-LFB assay. Conclusion These results confirmed that the HBV-MCDA-LFB is a low-cost, sensitive, specific, simple, and rapid method for detecting HBV agents. This technique has great potential to develop a point-of-care testing (POCT) method in clinical practice, especially in endemic and resource-constrained regions.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China.,Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Qingxue Zhou
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zhejiang, 310008, People's Republic of China
| | - Shilei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Shuoshi Wang
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Rui Liu
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xueli Wu
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Shijun Li
- Laboratory of Bacterial Infectious Disease of Experimental Centre, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, 550004, People's Republic of China
| |
Collapse
|
14
|
Zhou X, Xu Y, Zhu L, Su Z, Han X, Zhang Z, Huang Y, Liu Q. Comparison of Multiple Displacement Amplification (MDA) and Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) in Limited DNA Sequencing Based on Tube and Droplet. MICROMACHINES 2020; 11:mi11070645. [PMID: 32610698 PMCID: PMC7407204 DOI: 10.3390/mi11070645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
Whole genome amplification (WGA) is crucial for whole genome sequencing to investigate complex genomic alteration at the single-cell or even single-molecule level. Multiple displacement amplification (MDA) and multiple annealing and looping based amplification cycles (MALBAC) are two most widely applied WGA methods, which have different advantages and disadvantages, dependent on research objectives. Herein, we compared the MDA and MALBAC to provide more information on their performance in droplets and tubes. We observed that the droplet method could dramatically reduce the amplification bias and retain the high accuracy of replication than the conventional tube method. Furthermore, the droplet method exhibited higher efficiency and sensitivity for both homozygous and heterozygous single nucleotide variants (SNVs) at the low sequencing depth. In addition, we also found that MALBAC offered a greater uniformity and reproducibility and MDA showed a better efficiency of genomic coverage and SNV detection. Our results provided insights that will allow future decision making.
Collapse
|
15
|
Obande GA, Banga Singh KK. Current and Future Perspectives on Isothermal Nucleic Acid Amplification Technologies for Diagnosing Infections. Infect Drug Resist 2020; 13:455-483. [PMID: 32104017 PMCID: PMC7024801 DOI: 10.2147/idr.s217571] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleic acid amplification technology (NAAT) has assumed a critical position in disease diagnosis in recent times and contributed significantly to healthcare. Application of these methods has resulted in a more sensitive, accurate and rapid diagnosis of infectious diseases than older traditional methods like culture-based identification. NAAT such as the polymerase chain reaction (PCR) is widely applied but seldom available to resource-limited settings. Isothermal amplification (IA) methods provide a rapid, sensitive, specific, simpler and less expensive procedure for detecting nucleic acid from samples. However, not all of these IA techniques find regular applications in infectious diseases diagnosis. Disease diagnosis and treatment could be improved, and the rapidly increasing problem of antimicrobial resistance reduced, with improvement, adaptation, and application of isothermal amplification methods in clinical settings, especially in developing countries. This review centres on some isothermal techniques that have found documented applications in infectious diseases diagnosis, highlighting their principles, development, strengths, setbacks and imminent potentials for use at points of care.
Collapse
Affiliation(s)
- Godwin Attah Obande
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Microbiology, Faculty of Science, Federal University Lafia, Lafia, Nasarawa State, Nigeria
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
16
|
Yadav N, Chhillar AK, Rana JS. Detection of pathogenic bacteria with special emphasis to biosensors integrated with AuNPs. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Chen X, Ma K, Yi X, Xiao Z, Xiong L, Wang Y, Li S. A Novel Detection of Enterococcus faecalis Using Multiple Cross Displacement Amplification Linked with Gold Nanoparticle Lateral Flow Biosensor. Infect Drug Resist 2019; 12:3771-3781. [PMID: 31824177 PMCID: PMC6900465 DOI: 10.2147/idr.s235325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background Enterococcus faecalis, an opportunistic bacterial pathogen, is one of the most frequently isolated bacterial species and cause of serious nosocomial infections in recent decades. A reliable and rapid assay for E. faecalis detection is significant for the diagnosis and follow-up treatment. Methods A novel assay method, named multiple cross displacement amplification linked with nanoparticle-based lateral flow biosensor (MCDA-LFB), was applied for detecting E. faecalis strains. A set of special 10 primers was designed according to E. faecalis-specific gene Ef0027. The MCDA amplification conditions, including the target DNA concentration, reaction temperature and time, were optimized. The sensitivity and specificity of MCDA method were tested in the current study, and then, the MCDA-LFB technology was applied to detect the E. faecalis strain from clinical samples. Results The E. faecalis specific primers were valid for the establishment of MCDA-LFB technology forthe detection of E. faecalis based on the Ef0027 gene. The MCDA amplification condition was optimized at 62°C for 35 min. The MCDA products were directly sensed and displayed with a biosensor. The full process, comprising genomic DNA template preparation (approximately 30 mins), amplification of MCDA (35 mins), and the product identification (approximately 2 mins), could be achieved in 70 mins. The MCDA technique could detect as little as 10 fg per reaction system of pure E. faecalis genomic DNA. The specificity of E. faecalis-MCDA-LFB method is 100%, with no cross-reactions to non-E. faecalis strains. Conclusion The MCDA-LFB technique established in the present study is a reliable, simple, rapid, sensitive and specific method to assay E. faecalis and can be applied for the detection of clinical samples.
Collapse
Affiliation(s)
- Xu Chen
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, People's Republic of China.,Laboratory of Bacterial Infectious Disease of Experimental Centre, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou 550004, People's Republic of China
| | - Kai Ma
- Clinical Laboratory Centre of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, People's Republic of China
| | - Xu Yi
- Central Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, People's Republic of China
| | - Ziyu Xiao
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Lijuan Xiong
- Clinical Laboratory Centre of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, People's Republic of China
| | - Yu Wang
- Department of Clinical Laboratory Centre, The First People's Hospital of Guiyang, Guiyang, Guizhou 550004, People's Republic of China
| | - Shijun Li
- Laboratory of Bacterial Infectious Disease of Experimental Centre, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou 550004, People's Republic of China
| |
Collapse
|
18
|
Wang Y, Wang Y, Quan S, Jiao W, Li J, Sun L, Wang Y, Qi X, Wang X, Shen A. Establishment and Application of a Multiple Cross Displacement Amplification Coupled With Nanoparticle-Based Lateral Flow Biosensor Assay for Detection of Mycoplasma pneumoniae. Front Cell Infect Microbiol 2019; 9:325. [PMID: 31608243 PMCID: PMC6767991 DOI: 10.3389/fcimb.2019.00325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Mycoplasma pneumoniae (M. pneumoniae) is responsible for pneumonia, and is a causative agent of other respiratory tract infections (e.g., bronchiolitis and tracheobronchitis). Herein, we established and applied a multiple cross displacement amplification (MCDA) coupled with a nanoparticle-based lateral flow biosensor (LFB) assay (MCDA–LFB) for rapid, simple, and reliable detection of target pathogen. A set of 10 primers was designed based on M. pneumoniae-specific P1 gene, and optimal reaction conditions were found to be 30 min at 65°C. The detection results were visually reported using a biosensor within 2 min. The M. pneumoniae–MCDA–LFB method specifically detected only M. pneumoniae templates, and no cross-reactivity was generated from non-M. pneumoniae isolates. The analytical sensitivity for this assay was 50 fg of genomic templates in the pure cultures, as obtained from colorimetric indicator and real-time turbidimeter analysis. The assay was applied to 197 oropharyngeal swab samples collected from children highly suspected of M. pneumoniae infection, and compared to culture-based method and real-time PCR assay. The detection rates of M. pneumoniae using a culture-based method, real-time PCR assay, and MCDA–LFB assay were 8.1%, 33.0%, and 52.3%, respectively, which indicated that the MCDA–LFB assay was superior to the culture-based method and real-time PCR method for detection of target agent. Using this protocol, 25 min for rapid template extraction followed by MCDA reaction (30 min) combined with LFB detection (2 min) resulted in a total assay time of ~60 min. In conclusion, the MCDA–LFB assay established in this report was a simple, rapid, sensitive, and reliable assay to detect M. pneumoniae strains, and can be used as a potential diagnostic tool for M. pneumoniae in basic and clinical laboratories.
Collapse
Affiliation(s)
- Yacui Wang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shuting Quan
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Weiwei Jiao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jieqiong Li
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lin Sun
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yonghong Wang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xue Qi
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xingyun Wang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Adong Shen
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Zhao J, Xu W, Tu G, Zhou Y, Wu X. Sensitive and rapid detection of Ortleppascaris sinensis (Nematoda: Ascaridoidea) by loop-mediated isothermal amplification. PeerJ 2019; 7:e7607. [PMID: 31534850 PMCID: PMC6733237 DOI: 10.7717/peerj.7607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
Ortleppascaris sinensis is the dominant nematode species infecting the gastrointestinal tract of the captive Chinese alligator, a critically endangered species. Gastrointestinal nematode infection may cause a loss of appetite, growth, a development disorder, and even mortality in alligators, especially young ones. This research first establishment a loop-mediated isothermal amplification (LAMP) assay in rapidly identifying O. sinensis, upon the basis of the complete internal transcribed spacers (ITS) gene. Eight sets of primers were designed for recognition of the unique conserved ITS gene sequences, and one set was selected to be the most suitable primer for rapid detection. The specific as well as the sensitive features of the most appropriate primer in LAMP reactions for O. sinensis, and feces specimens of Chinese alligators suffering from O. sinensis were determined. Turbidity monitoring and Te Visual Reagent methods were used for determining negative and positive consequences. According to this study, amplification and visualization of the target DNA could be realized through two detection approaches during 50 min at 65 °C isothermal temperature. The sensitivity of LAMP was a detecting limitation of 3.46 pg/µl DNA. No cross-reactions were found between O. sinensis and any other of the nine heterologous nematode parasites, which shows the outstanding specific features of the primers. The LAMP assay could also perform a detection of target DNA of O. sinensis in the feces samples of Chinese alligators. This LAMP assay is useful for directly detecting O. sinensis in the Chinese alligator breeding centers, particularly due to its rapidity, simplicity and low cost.
Collapse
Affiliation(s)
- Jinhong Zhao
- Department of Parasitology, Wannan Medical College, Wuhu, Anhui, China.,Provincial Laboratory of Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wei Xu
- Department of Parasitology, Wannan Medical College, Wuhu, Anhui, China
| | - Genjun Tu
- The National Nature Reserve of Chinese Alligator in Anhui, Xuanzhou, Anhui, China
| | - Yongkang Zhou
- The National Nature Reserve of Chinese Alligator in Anhui, Xuanzhou, Anhui, China
| | - Xiaobing Wu
- Provincial Laboratory of Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
20
|
Qiu X, Chen D, Wang X, Zhou H, Hou X, Zhang J, Li M, Li Z. A novel isothermal amplification-based method for detection of Corynebacterium striatum. J Microbiol Methods 2019; 164:105675. [PMID: 31351107 DOI: 10.1016/j.mimet.2019.105675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
Corynebacterium striatum is an emerging multidrug-resistant pathogen causing increasing numbers of infections and nosocomial outbreaks worldwide. Thus, a simple, rapid and accurate method for C. striatum is urgently required for improving diagnosis efficiency. In this study, a C. striatum-multiple cross displacement amplification (MCDA) with visual detection reagent (VR) assay (C. striatum-MCDA-VR), which was a novel isothermal amplification-based method, was established to detect the species-specific ftr1 gene of C. striatum. Amplification was performed at a constant temperature (68 °C) for only 40 min, and the reaction results could be easily elucidated by observation of reaction mixture color when employing the VR. The limit of detection of this method was 10 fg of pure C. striatum DNA. No cross-reaction was observed with non-C. striatum strains. In testing of clinical sputum samples, the C. striatum-MCDA-VR assay showed excellent sensitivity and specificity when compared with sputum smear tests and PCR. The C. striatum-MCDA-VR assay is a simple, rapid and cost-effective approach for identifying C. striatum in microbiological laboratories, especially in resource-limited settings.
Collapse
Affiliation(s)
- Xiaotong Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Dongke Chen
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xuebing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xuexin Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Jingshan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Mengtong Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| |
Collapse
|
21
|
Gong L, Liu E, Che J, Li J, Liu X, Xu H, Liang J. Multiple Cross Displacement Amplification Coupled With Gold Nanoparticles-Based Lateral Flow Biosensor for Detection of the Mobilized Colistin Resistance Gene mcr-1. Front Cell Infect Microbiol 2019; 9:226. [PMID: 31316917 PMCID: PMC6610462 DOI: 10.3389/fcimb.2019.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023] Open
Abstract
Fast dissemination of the mobilized colistin resistance (mcr) gene mcr-1 in Enterobacteriaceae causes a huge threat to the treatment of severe infection. In the current report, a multiple cross displacement amplification (MCDA) coupled with the detection of amplified products by gold nanoparticles-based lateral flow biosensor (LFB) assay (MCDA-LFB) was established to identify the mcr-1 gene with simpleness, rapidity, specificity, and sensitivity. The MCDA-LFB assay was performed at a isothermal temperature (63°C) for only 30 min during the amplification stage, and the reaction products were directly identified by using LFB which obtained the result within 2 min. The entire process of experiments, from templates extraction to result judging, was accomplished in <60 min. For the analytical specificity of this method, all of the 16 mcr-1-producing strains were positive, and all of the non-mcr-1 isolates produced the negative results. The sensitivity of mcr-1-MCDA-LFB assay was as little as 600 fg of plasmid DNA per reaction in pure culture, and approximately 4.5 × 103 CFU/mL (~4.5 CFU/reaction) in spiked fecal samples. Therefore, this technique established in the present study is suitable for the surveillance of mcr-1 gene in clinic and livestock industry.
Collapse
Affiliation(s)
- Lin Gong
- Department of Disinfection and Pest Control, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Ernan Liu
- Department of Disinfection and Pest Control, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Jie Che
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Juan Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiaoli Liu
- Department of Disinfection and Pest Control, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Huiqiong Xu
- Department of Disinfection and Pest Control, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Jiansheng Liang
- Department of Disinfection and Pest Control, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| |
Collapse
|