1
|
Lopes LO, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Cabral-Marques O, Fernandez GJ, Hirata MH, Wang DZ, Dal-Pai-Silva M, Carvalho RF, Freire PP. The Impact of miR-155-5p on Myotube Differentiation: Elucidating Molecular Targets in Skeletal Muscle Disorders. Int J Mol Sci 2024; 25:1777. [PMID: 38339055 PMCID: PMC10855706 DOI: 10.3390/ijms25031777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies remain poorly understood. Through in silico and in vitro approaches, we identify distinct transcriptional profiles induced by miR-155-5p in muscle cells. The treated myotubes changed the expression of 359 genes (166 upregulated and 193 downregulated). We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3, Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation, muscle cell maintenance, and the immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages, indicating miR-155's effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related pathways in skeletal muscle disorders.
Collapse
Affiliation(s)
- Letícia Oliveira Lopes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Jakeline Santos Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo 05403-010, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo 05403-010, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo 05508-090, Brazil
| | - Geysson Javier Fernandez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- College of Medicine, University of Antioquia, UdeA, Medellín 53-108, Colombia
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
| | - Da-Zhi Wang
- Health Heart Institute, Center for Regenerative Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
2
|
Grieb A, Schmitt A, Fragasso A, Widmann M, Mattioni Maturana F, Burgstahler C, Erz G, Schellhorn P, Nieß AM, Munz B. Skeletal Muscle MicroRNA Patterns in Response to a Single Bout of Exercise in Females: Biomarkers for Subsequent Training Adaptation? Biomolecules 2023; 13:884. [PMID: 37371465 DOI: 10.3390/biom13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
microRNAs (miRs) have been proposed as a promising new class of biomarkers in the context of training adaptation. Using microarray analysis, we studied skeletal muscle miR patterns in sedentary young healthy females (n = 6) before and after a single submaximal bout of endurance exercise ('reference training'). Subsequently, participants were subjected to a structured training program, consisting of six weeks of moderate-intensity continuous endurance training (MICT) and six weeks of high-intensity interval training (HIIT) in randomized order. In vastus lateralis muscle, we found significant downregulation of myomiRs, specifically miR-1, 133a-3p, and -5p, -133b, and -499a-5p. Similarly, exercise-associated miRs-23a-3p, -378a-5p, -128-3p, -21-5p, -107, -27a-3p, -126-3p, and -152-3p were significantly downregulated, whereas miR-23a-5p was upregulated. Furthermore, in an untargeted approach for differential expression in response to acute exercise, we identified n = 35 miRs that were downregulated and n = 20 miRs that were upregulated by factor 4.5 or more. Remarkably, KEGG pathway analysis indicated central involvement of this set of miRs in fatty acid metabolism. To reproduce these data in a larger cohort of all-female subjects (n = 29), qPCR analysis was carried out on n = 15 miRs selected from the microarray, which confirmed their differential expression. Furthermore, the acute response, i.e., the difference between miR concentrations before and after the reference training, was correlated with changes in maximum oxygen uptake (V̇O2max) in response to the training program. Here, we found that miRs-199a-3p and -19b-3p might be suitable acute-response candidates that correlate with individual degrees of training adaptation in females.
Collapse
Affiliation(s)
- Alexandra Grieb
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Angelika Schmitt
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Annunziata Fragasso
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Manuel Widmann
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Felipe Mattioni Maturana
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Christof Burgstahler
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Gunnar Erz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Philipp Schellhorn
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Andreas M Nieß
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Barbara Munz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| |
Collapse
|
3
|
Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. BIOLOGY 2022; 11:1151. [PMID: 36009778 PMCID: PMC9405439 DOI: 10.3390/biology11081151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The past years have seen an increasing concern about frailty, owing to the growing number of elderly people and the major impact of this syndrome on health and social care. The identification of frail people passes through the use of different tests and biomarkers, whose concerted analysis helps to stratify the populations of patients according to their risk profile. However, their efficiency in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed. Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in different organismal districts. Changes in miRNAs expression have been described in biological processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while considering its complex nature, we revised the current literature on the field, for uncovering miRNAs shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis of frailty in the elderly population.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.I.); (G.P.); (G.R.)
| | | | | | | | | |
Collapse
|
4
|
Santos JMO, Peixoto da Silva S, Bastos MMSM, Oliveira PA, Gil da Costa RM, Medeiros R. Decoding the role of inflammation-related microRNAs in cancer cachexia: a study using HPV16-transgenic mice and in silico approaches. J Physiol Biochem 2022; 78:439-455. [PMID: 35298788 DOI: 10.1007/s13105-021-00866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
Cachexia is associated with poor prognosis in cancer patients, and inflammation is one of its main drive factors. MicroRNAs have recently emerged as important players in cancer cachexia and are involved in reciprocal regulation networks with pro-inflammatory signaling pathways. We hypothesize that inflammation-driven cancer cachexia is regulated by specific microRNAs. The aim of this study is to explore the expression and role of inflammation-related microRNAs in muscle wasting. HPV16-transgenic mice develop systemic inflammation and muscle wasting and are a model for cancer cachexia. We employed gastrocnemius muscle samples from these mice to study the expression of microRNAs. Bioinformatic tools were then used to explore their potential role in muscle wasting. Among the microRNAs studied, miR-223-3p (p = 0.004), let-7b-5p (p = 0.034), miR-21a-5p (p = 0.034), miR-150-5p (p = 0.027), and miR-155-5p (p = 0.011) were significantly upregulated in muscles from cachectic mice. In silico analysis showed that these microRNAs participate in several processes related to muscle wasting, including muscle structure development and regulation of the MAPK pathway. When analyzing protein-protein interactions (PPI)-networks, two major clusters and the top 10 hubs were obtained. From the top 10, Kras (p = 0.050) and Ccdn1 (p = 0.009) were downregulated in cachectic muscles, as well as Map2k3 (p = 0.007). These results show that miR-223-3p, let-7b-5p, miR-21a-5p, miR-150-5p, and miR-155-5p, play a role in muscle wasting in HPV16 transgenic mice, possible through regulating the MAPK cascades. Future experimental studies are required to validate our in silico analysis, and to explore the usefulness of these microRNAs and MAPK signaling as new potential biomarkers or therapy targets for cancer cachexia.
Collapse
Affiliation(s)
- Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal
| | - Sara Peixoto da Silva
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal
| | - Margarida M S M Bastos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, 4200-465, Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering of the University of Porto, 4200-465, Porto, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
- Research Department of the Portuguese League Against Cancer - Regional Nucleus of the North (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), 4200-177, Porto, Portugal.
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal.
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
5
|
Mori T, Onodera Y, Itokazu M, Takehara T, Shigi K, Iwawaki N, Akagi M, Teramura T. Depletion of NIMA-related kinase Nek2 induces aberrant self-renewal and apoptosis in stem/progenitor cells of aged muscular tissues. Mech Ageing Dev 2022; 201:111619. [PMID: 34995645 DOI: 10.1016/j.mad.2022.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
Frailty of the locomotory organs has become a widespread problem in the geriatric population. The major factor leading to frailty is an age-associated decrease in muscular mass and a reduced number of muscular cells and myofibers. In aged muscular tissues, muscular satellite cells (MuSCs) are reduced due to abnormalities in their self-renewal and the induction of apoptosis. However, the molecular mechanisms connecting aging-associated physiological changes and the reduction of MuSCs are largely unknown. NIMA-related kinase 2 (Nek2), a member of the Nek family of serine/threonine kinases, was found to be downregulated in aged MuSCs/progenitors. Further, Nek2 downregulation was found to inhibit self-renewal and apoptotic cell death by activating the p53-dependent checkpoint. Attenuated NEK2 expression was also observed in the muscular tissues of elderly donors, and its function was confirmed to be conserved in humans. Overall, this study proposes a novel mechanism for inducing muscular atrophy to understand aging-associated muscular diseases.
Collapse
Affiliation(s)
| | - Yuta Onodera
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Maki Itokazu
- Department of Rehabilitation Medicine, Kindai University Faculty of Medicine, Japan
| | - Toshiyuki Takehara
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Kanae Shigi
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Natsumi Iwawaki
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Faculty of Medicine, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan.
| |
Collapse
|
6
|
Luo J, Liu Y, Liu P, Lai Z, Wu H. Data Integration Using Tensor Decomposition for The Prediction of miRNA-Disease Associations. IEEE J Biomed Health Inform 2021; 26:2370-2378. [PMID: 34748505 DOI: 10.1109/jbhi.2021.3125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dysfunction of miRNAs has an important relationship with diseases by impacting their target genes. Identifying disease-related miRNAs is of great significance to prevent and treat diseases. Integrating information of genes related miRNAs and/or diseases in calculational methods for miRNA-disease association studies is meaningful because of the complexity of biological mechanisms. Therefore, in this study, we propose a novel method based on tensor decomposition, termed TDMDA, to integrate multi-type data for identifying pathogenic miRNAs. First, we construct a three-order association tensor to express the associations of miRNA-disease pairs, the associations of miRNA-gene pairs, and the associations of gene-disease pairs simultaneously. Then, a tensor decomposition-based method with auxiliary information is applied to reconstruct the association tensor for predicting miRNA-disease associations, and the auxiliary information includes biological similarity information and adjacency information. The performance of TDMDA is compared with other advanced methods under 5-fold cross-validations. The experimental results indicate the TDMDA is a competitive method.
Collapse
|
7
|
Corso D, Chemello F, Alessio E, Urso I, Ferrarese G, Bazzega M, Romualdi C, Lanfranchi G, Sales G, Cagnin S. MyoData: An expression knowledgebase at single cell/nucleus level for the discovery of coding-noncoding RNA functional interactions in skeletal muscle. Comput Struct Biotechnol J 2021; 19:4142-4155. [PMID: 34527188 PMCID: PMC8342900 DOI: 10.1016/j.csbj.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression through non-coding RNAs at single myofiber and nucleus resolution. Reinterpretation of KEGG pathways with microRNA and long non-coding RNA activities. miR-149, -214, and let-7e alter mitochondrial shape. The long non-coding RNA Pvt1 is a sponge for miR-27a. miR-208b regulates Sox6; miR-214 regulates both Sox6 and Slc16a3.
Non-coding RNAs represent the largest part of transcribed mammalian genomes and prevalently exert regulatory functions. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) can modulate the activity of each other. Skeletal muscle is the most abundant tissue in mammals. It is composed of different cell types with myofibers that represent the smallest complete contractile system. Considering that lncRNAs and miRNAs are more cell type-specific than coding RNAs, to understand their function it is imperative to evaluate their expression and action within single myofibers. In this database, we collected gene expression data for coding and non-coding genes in single myofibers and used them to produce interaction networks based on expression correlations. Since biological pathways are more informative than networks based on gene expression correlation, to understand how altered genes participate in the studied phenotype, we integrated KEGG pathways with miRNAs and lncRNAs. The database also integrates single nucleus gene expression data on skeletal muscle in different patho-physiological conditions. We demonstrated that these networks can serve as a framework from which to dissect new miRNA and lncRNA functions to experimentally validate. Some interactions included in the database have been previously experimentally validated using high throughput methods. These can be the basis for further functional studies. Using database information, we demonstrate the involvement of miR-149, -214 and let-7e in mitochondria shaping; the ability of the lncRNA Pvt1 to mitigate the action of miR-27a via sponging; and the regulatory activity of miR-214 on Sox6 and Slc16a3. The MyoData is available at https://myodata.bio.unipd.it.
Collapse
Affiliation(s)
- Davide Corso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Francesco Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Enrico Alessio
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Ilenia Urso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Giulia Ferrarese
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Martina Bazzega
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
8
|
Singh A, Verma V, Kumar M, Kumar A, Sarma DK, Singh B, Jha R. Stem cells-derived in vitro meat: from petri dish to dinner plate. Crit Rev Food Sci Nutr 2020; 62:2641-2654. [PMID: 33291952 DOI: 10.1080/10408398.2020.1856036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sustainable food supply to the world is possibly the greatest challenge that human civilization has ever faced. Among animal sourced foods, meat plays a starring role in human food chain. Traditional meat production necessitates high proportion of agricultural land, energy and clean water for rearing meat-producing animals; also massive emission of greenhouse gases from the unutilized nutrients of the digestive process into the environment is a major challenge to the world. Also, conventional meat production is associated with evolution and spread of superbugs and zoonotic infections. In vitro meat has the potential to provide a healthy alternative nutritious meal and to avoid the issues associated with animal slaughtering and environmental effects. Stem cell technology may provide a fascinating approach to produce meat in an animal-free environment. Theoretically, in vitro meat can supplement the meat produced by culling the animals and satisfy the global demand. This article highlights the necessity and potential of stem cell-derived in vitro meat as an alternative source of animal protein vis-a-vis the constraints of conventional approaches of meat production.
Collapse
Affiliation(s)
- Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ashok Kumar
- Department of Zoology, MLK Post Graduate College, Balrampur, India
| | | | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Rajneesh Jha
- Curi Bio, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Regulation of microRNAs in Satellite Cell Renewal, Muscle Function, Sarcopenia and the Role of Exercise. Int J Mol Sci 2020; 21:ijms21186732. [PMID: 32937893 PMCID: PMC7555198 DOI: 10.3390/ijms21186732] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia refers to a condition of progressive loss of skeletal muscle mass and function associated with a higher risk of falls and fractures in older adults. Musculoskeletal aging leads to reduced muscle mass and strength, affecting the quality of life in elderly people. In recent years, several studies contributed to improve the knowledge of the pathophysiological alterations that lead to skeletal muscle dysfunction; however, the molecular mechanisms underlying sarcopenia are still not fully understood. Muscle development and homeostasis require a fine gene expression modulation by mechanisms in which microRNAs (miRNAs) play a crucial role. miRNAs modulate key steps of skeletal myogenesis including satellite cells renewal, skeletal muscle plasticity, and regeneration. Here, we provide an overview of the general aspects of muscle regeneration and miRNAs role in skeletal mass homeostasis and plasticity with a special interest in their expression in sarcopenia and skeletal muscle adaptation to exercise in the elderly.
Collapse
|