1
|
Lv Y, Tang J, Li T, Zhao Y, Wu C, Zhao W. Synthetic rEg.P29 Peptides Induce Protective Immune Responses Against Echinococcus granulosus in Mice. Vaccines (Basel) 2025; 13:266. [PMID: 40266142 PMCID: PMC11946492 DOI: 10.3390/vaccines13030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/24/2025] Open
Abstract
Background:Echinococcus granulosus represents a significant threat to animal husbandry and human health, but its consequences are often underestimated. Vaccination can prevent E. granulosus infection. We investigated the immune protective effect induced by the recombinant protein P29 of E. granulosus (rEg.P29) peptide vaccine. Methods: The CD4+ T-, CD8+ T-, Treg-, and CD8+CD107a+ T-cell proportions in the spleen and peripheral blood of infected mice were analyzed using flow cytometry. Additionally, we measured the proportions of IFN-γ and IL-2 secreted by memory T cells, CD19+CD138-B cells, CD19+CD138+ plasmablasts, CD19-CD138+ plasma cells, and CD19+IgD-IgG+ and CD19+IgD-IgA+ memory B cells. Results: No significant differences were noted in CD4+ T-, CD8+ T-, and CD8+CD107a+ Treg-cell percentages among the experimental groups. However, IFN-γ, IL-2, and TNF-α levels and vaccine-specific antibody concentrations in the plasma were significantly elevated in the rEg.P29T+B + CpG + infection and rEg.P29 + CpG + infection groups compared to those in the PBS + infection and CpG + infection groups. Similarly, CD19-CD138+ plasma cell and CD19+IgD-IgG+ and CD19+IgD-IgA+ memory B-cell populations, along with specific antibodies, were significantly higher in these groups. Especially, the average cyst burden in the rEg.P29T+B + CpG + infection and rEg.P29 + CpG + infection groups was significantly reduced compared to that in the PBS + infection and CpG + infection groups. Conclusions: Synthetic peptide vaccines targeting rEg.P29 can effectively inhibit cysts, offering a novel strategy for the development of vaccines against E. granulosus. These findings provide a foundation for further research on the immunogenicity and protective efficacy of rEg.P29-based vaccines.
Collapse
Affiliation(s)
- Yongxue Lv
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.L.); (J.T.)
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan 750004, China;
| | - Jing Tang
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.L.); (J.T.)
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan 750004, China;
| | - Tao Li
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China;
| | - Yinqi Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan 750004, China;
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 5102275, China;
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.L.); (J.T.)
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan 750004, China;
| |
Collapse
|
2
|
Zhang C, Wang H, Aji T, Li Z, Li Y, Ainiwaer A, Rousu Z, Li J, Wang M, Deng B, Duolikun A, Kang X, Zheng X, Yu Q, Shao Y, Zhang W, Vuitton DA, Tian Z, Sun H, Wen H. Targeting myeloid-derived suppressor cells promotes antiparasitic T-cell immunity and enhances the efficacy of PD-1 blockade (15 words). Nat Commun 2024; 15:6345. [PMID: 39068159 PMCID: PMC11283557 DOI: 10.1038/s41467-024-50754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Immune exhaustion corresponds to a loss of effector function of T cells that associates with cancer or chronic infection. Here, our objective was to decipher the mechanisms involved in the immune suppression of myeloid-derived suppressor cells (MDSCs) and to explore the potential to target these cells for immunotherapy to enhance checkpoint blockade efficacy in a chronic parasite infection. We demonstrated that programmed cell-death-1 (PD-1) expression was significantly upregulated and associated with T-cell dysfunction in advanced alveolar echinococcosis (AE) patients and in Echinococcus multilocularis-infected mice. PD-1 blockade ex vivo failed to reverse AE patients' peripheral blood T-cell dysfunction. PD-1/PD-L1 blockade or PD-1 deficiency had no significant effects on metacestode in mouse model. This was due to the inhibitory capacities of immunosuppressive granulocytic MDSCs (G-MDSCs), especially in the liver surrounding the parasite pseudotumor. MDSCs suppressed T-cell function in vitro in an indoleamine 2, 3 dioxygenase 1 (IDO1)-dependent manner. Although depleting MDSCs alone restored T-cell effector functions and led to some limitation of disease progression in E. multilocularis-infected mice, combination with PD-1 blockade was better to induce antiparasitic efficacy. Our findings provide preclinical evidence in support of targeting MDSC or combining such an approach with checkpoint blockade in patients with advanced AE. (200 words).
Collapse
Affiliation(s)
- Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
- Key Laboratory of High Incidence Disease Research in Xingjiang, Ministry of Education, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Key Laboratory of High Incidence Disease Research in Xingjiang, Ministry of Education, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, P. R. China
| | - Tuerganaili Aji
- Key Laboratory of High Incidence Disease Research in Xingjiang, Ministry of Education, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Zhide Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Yinshi Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Abidan Ainiwaer
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Zibigu Rousu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Maolin Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Bingqing Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Adilai Duolikun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Xuejiao Kang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Xuran Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Qian Yu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Yingmei Shao
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, P. R. China
| | - Dominique A Vuitton
- WHO-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Parasitology, University Bourgogne Franche-Comté (EA 3181) and University Hospital, Besançon, France
| | - Zhigang Tian
- Hefei National Research Center for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Haoyu Sun
- Hefei National Research Center for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China.
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P. R. China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University; Clinical Medicine Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P. R. China.
| |
Collapse
|
3
|
Fu Y, Huang FY, Dai SZ, Wang L, Zhou X, Zheng ZY, Wang CC, Tan GH, Li Q. Penicilazaphilone C alleviates allergic airway inflammation and improves the immune microenvironment by hindering the NLRP3 inflammasome. Biomed Pharmacother 2024; 175:116788. [PMID: 38772153 DOI: 10.1016/j.biopha.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
AIMS Penicilazaphilone C (PAC) is hypothesized to potentially serve as a therapeutic treatment for allergic airway inflammation by inhibiting the NLRP3 inflammasome and reducing oxidative stress. METHODS An allergic asthma model was induced in female BALB/c mice of the OVA, OVA+PAC, OVA+PAC+LPS, and OVA+Dex groups by sensitizing and subsequently challenging them with OVA. The OVA+PAC and Normal+PAC groups were treated with PAC, while the OVA+PAC+LPS group also received LPS. The OVA+Dex group was given dexamethasone (Dex). Samples of serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for histological and cytological analysis. RESULTS Allergic mice treated with PAC or Dex showed inhibited inflammation and mucus production in the lungs. There was a decrease in the number of inflammatory cells in the BALF, lower levels of inflammatory cytokines in the serum and BALF, and a reduction in the protein expression of NLRP3, ASC, cleaved caspase-1, IL-1β, activated gasdermin D, MPO, Ly6G, and ICAM-1. Additionally, oxidative stress was reduced, as shown by a decrease in MDA and DCF, but an increase in SOD and GSH. Treatment with PAC also resulted in a decrease in pulmonary memory CD4+ T cells and an increase in regulatory T cells. However, the positive effects seen in the PAC-treated mice were reversed when the NLRP3 inflammasome was activated by LPS, almost returning to the levels of the Sham-treated mice. SIGNIFICANCE PAC acts in a similar way to anti-allergic inflammation as Dex, suggesting it may be a viable therapeutic option for managing allergic asthma inflammation.
Collapse
Affiliation(s)
- Yongshu Fu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Lin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Zhen-You Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Cai-Chun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China.
| |
Collapse
|
4
|
Sadr S, Borji H. Echinococcus granulosus as a Promising Therapeutic Agent against Triplenegative Breast Cancer. CURRENT CANCER THERAPY REVIEWS 2023; 19:292-297. [DOI: 10.2174/1573394719666230427094247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 08/19/2024]
Abstract
Abstract:Breast cancer is a major cause of cancer deaths in women, with approximately 1.2 million new cases per year. Current treatment options for breast cancer include surgery, radiation, hormone therapy, and chemotherapy. However, the non-selective cytotoxicity of chemotherapeutic agents often leads to severe side effects, while drug resistance can worsen patient outcomes. Therefore, the development of more effective and less toxic anticancer drugs is a critical need. This study aimed to review the literature on Echinococcus granulosus antigens with anticancer potential against triple-negative breast cancer. Recent studies have suggested that certain parasite antigens may have potential anticancer effects. Specifically, research has shown that echinococcosis, a disease caused by the parasitic cestode Echinococcus granulosus, may have a protective effect against cancer. These findings offer new insights into the potential use of E. granulosus antigens in the development of novel cancer therapies and tumor cell vaccines. The findings of recent studies suggested that E. granulosus antigens may have the potential to be used in effective and less toxic cancer treatments. However, further research is needed to fully understand the mechanisms behind the anticancer effects of these antigens and develop new cancer therapies and vaccines
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Wang M, Shang Z, Qiao F, Hei J, Ma X, Wang Y. Notch signaling pathway involved in Echinococcus granulosus infection regulates dendritic cell development and differentiation. Front Cell Infect Microbiol 2023; 13:1147025. [PMID: 37274316 PMCID: PMC10235693 DOI: 10.3389/fcimb.2023.1147025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction The Notch signaling pathway is involved in the development of many diseases; it regulates the development of dendritic cells (DCs), and affects the immune response of DC-mediated T cells. We previously found that ferritin and malate dehydrogenase (mMDH) in Echinococcus granulosus (E.granulosus) induced different immune responses through sensitized DCs. Therefore, in the study we explored whether the Notch signaling pathway affects the development and differentiation of DCs, causing changes in the immune response of DCs sensitized with E. granulosus antigens, and clarified whether it is involved in E.granulosus infection. Methods We used the Notch signaling pathway inhibitor [N-[3,5-difluorophenace-tyl] -L-alanyl]-S-phenylglycinet-butyl ester (DAPT) or activator Jagged1 to construct in vitro cell models with blocked or activated Notch signaling respectively. We analyzed the effect of Notch signaling on the development and differentiation of DCs by detecting their morphology, migration function, capacity to promote T cell proliferation, and cytokine secretion. We observed the changes in DC response to E. granulosus antigens and the mediated immune response. Results DAPT inhibited the development and maturation of DCs, which were in a non-responsive or incompetent state, reduced the sensitization of DCs to Eg.ferritin, weakened the migration ability of DCs, disrupted their ability to mediate T-cell proliferation, reduced DC expression of MHCII, CD80, CD60, and CD40 co-stimulatory molecules, prevented the secretion of cytokines and attenuated the expression of Notch1, Notch2, Notch3 receptors, Jagged1, Delta-like 4 (Delta4), and Hes1. Following Jagged1 addition, the function of DCs was restored to some extent, and the expression of Notch1, Delta4 and Hes1 was activated in response to the stimulation of Eg.ferritin. However, Eg.mMDH stimulated DCs to produce an immune response showing weak interference by DAPT and Jagged1. Discussion The study suggests that the Notc h signaling pathway is involved in the Eg.ferritin-sensitized DC-mediated immune response, which may become a new target for treating E.granulosus infection.
Collapse
Affiliation(s)
- Mingxia Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Zailing Shang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Fei Qiao
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Junhu Hei
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Xueling Ma
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
- Key Laboratory of Common Infectious Diseases of Ningxia Autonomous Region, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Morales-Ruiz V, López-Recinos D, Castañeda MG, Guevara-Salinas A, Parada-Colin C, Gómez-Fuentes S, Espitia-Pinzón C, Hernández-González M, Adalid-Peralta L. Characterization of excretory/secretory products of the Taenia crassiceps cysticercus involved in the induction of regulatory T cells in vivo. Parasitol Res 2023:10.1007/s00436-023-07847-x. [PMID: 37115316 DOI: 10.1007/s00436-023-07847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
The ability to modulate the host immune response has allowed some parasites to establish themselves in the tissues of an immunocompetent organism. While some parasite excretion/secretion products (ESPs) were recently reported to induce differentiation of regulatory T cells (Tregs), their identity is not known. This work is aimed to identify and characterize ESPs of Taenia crassiceps cysticerci linked with Treg induction in vivo. ESPs were obtained from cultures of T. crassiceps cysticerci and inoculated in mice, measuring Treg levels by flow cytometry. Proteins in ESPs were analyzed by electrophoresis; then, ESPs were classified as either differential or conserved. Differentially included proteins were MS-sequenced and functionally characterized. Only 4 of 10 ESPs induced Tregs. Proteins with catalytic activity and those involved in immunological processes predominated, supporting the idea that these molecules could play an important role in the induction of Tregs.
Collapse
Affiliation(s)
- Valeria Morales-Ruiz
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
| | - Dina López-Recinos
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
| | - María Gracia Castañeda
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
- Laboratorio de Biología Molecular y Genética del Centro Médico Naval, Cirujano Mayor Santiago Távara de La Marina de Guerra del Perú, Avenida S/N, Avenida República de Venezuela, Bellavista, Peru
| | - Adrián Guevara-Salinas
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
| | - Cristina Parada-Colin
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Sandra Gómez-Fuentes
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
| | - Clara Espitia-Pinzón
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Marisela Hernández-González
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Laura Adalid-Peralta
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico.
- Instituto Nacional de Neurología Y Neurocirugía, Insurgentes Sur 3877, Col. La Fama, 14269, Mexico City, Mexico.
| |
Collapse
|
7
|
Zhu M, Wang C, Yang S, Du X, Zhu Y, Zhang T, Lv Y, Zhao W. Alterations in Gut Microbiota Profiles of Mice Infected with Echinococcus granulosus sensu lato Microbiota Profiles of Mice Infected with E. granulosus s.l. Acta Parasitol 2022; 67:1594-1602. [PMID: 36048399 PMCID: PMC9705484 DOI: 10.1007/s11686-022-00613-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/17/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Cystic echinococcosis is a kind of parasitic disease that seriously endangers human and animal health. At present, its prevention and treatment still do not achieve the desired results. The aims of this study were to explore the effect of CE on intestinal microflora in mice. METHODS In this study, 16S rRNA metagenome sequencing and bioinformatics were used to analyze the intestinal flora of mice infected with E. granulosus s.l. Changes in intestinal microbial community abundance were investigated and the differences in microbial populations of mice infected with E. granulosus s.l. were screened. RESULTS Our results show that at the phylum level, nine abundant taxa were identified, the relative abundance of Firmicutes and Proteobacteria were enriched in infected mice, whereas Bacteroidetes and Patescibacteria were enriched in control mice (P < 0.01). At the class level, 13 abundant taxa were identified, the relative abundance of Bacilli was enriched in control mice, but decreased in infected mice (P < 0.01). At the order level, 15 abundant taxa were identified, the relative abundance of Lactobacillales was enriched in control mice, but decreased in infected mice (P < 0.01). At the family level, 28 abundant taxa were identified, enriched bacteria in the infected mice was Streptococcaceae, while the enriched bacteria in the control group was Lactobacillaceae (P < 0.01). At the genus level, 79 abundant taxa were identified, enriched bacteria in the infected mice was Streptococcus, while the enriched bacteria in the control group was uncultured_bacterium_f_Eggerthellaceae (P < 0.01). At the species level, 80 abundant taxa were identified, enriched bacteria in the infected mice was uncultured_bacterium_g_Streptococcus, while the enriched bacteria in the control group was uncultured_bacterium_f_Eggerthellaceae (P < 0.01). 39 KEGG pathways were identified that were differentially enriched between the infected and control mice. CONCLUSION This study comprehensively demonstrates the differential intestinal microbiota of infected mice and analyzes the metabolic pathways related to the specific microbiota. This could provide new targets and research direction for the treatment and prevention of diseases caused by E. granulosus s.l.
Collapse
Affiliation(s)
- Mingxing Zhu
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Chan Wang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Songhao Yang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Xiancai Du
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Yazhou Zhu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Tingrui Zhang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Yongxue Lv
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Wei Zhao
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia , Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| |
Collapse
|
8
|
Jin L, Hu Q, Hu Y, Chen Z, Liao W. Respiratory Syncytial Virus Infection Reduces Kynurenic Acid Production and Reverses Th17/Treg Balance by Modulating Indoleamine 2,3-Dioxygenase (IDO) Molecules in Plasmacytoid Dendritic Cells. Med Sci Monit 2020; 26:e926763. [PMID: 33262321 PMCID: PMC7720431 DOI: 10.12659/msm.926763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) infection causes a world-wide medical and economic burden. This study analyzed the effects of RSV infection on plasmacytoid dendritic cells (pDCs) and evaluated the immunopathogenesis of RSV infection by measuring relative numbers of FoxP3+ Treg cells and Th17 cells. Material/Methods pDCs were isolated from human blood samples, purified using magnetic microbeads, and treated with RSV, IFN-γ, or vehicle. These cells were mixed with purified CD4+ T cells to yield preparations of pDCs+T cells+vehicle, pDCs+T cells+RSV, and pDCs+T cells+IFN-γ. Preparations of pDCs+T cells+RSV were also incubated with an inducer or an inhibitor of indoleamine 2,3-dioxygenase (IDO). Kynurenic acid concentration was measured by high-pressure liquid chromatography (HPLC). The differentiation of Foxp3+ Treg and Th17 cells from CD4+ T cells was determined by flow cytometry. Results pDCs were successfully isolated and purified using the magnetic microbeads. Compared with preparations of pDCs+T cells+vehicle, RSV infection (pDCs+T cells+RSV) significantly reduced and IFN-γ treatment (pDC+T cells+IFN-γ) increased kynurenic acid concentrations and the proportions of Foxp3+ Tregs (p<0.05 each). Conversely, RSV infection increased and IFN-γ treatment decreased the proportions of Th17 cells (p<0.05 each). RSV infection reduced kynurenic acid concentrations and inhibited the transformation from Th17 to Foxp3+ Tregs by modulating IDO molecules. Conclusions RSV infection reduced the production of kynurenic acid and inhibited transformation from Th17 to Foxp3+ Tregs (Th17/Treg balance) by modulating IDO molecules in pDCs.
Collapse
Affiliation(s)
- Ling Jin
- Department of Pediatrics, The First Affiliated Hospital (Southwest Hospital) of Army Medical University, Chongqing, China (mainland)
| | - Qi Hu
- Department of Pediatrics, The First Affiliated Hospital (Southwest Hospital) of Army Medical University, Chongqing, China (mainland)
| | - Ying Hu
- Department of Pediatrics, The First Affiliated Hospital (Southwest Hospital) of Army Medical University, Chongqing, China (mainland)
| | - Zhiqiang Chen
- Department of Pediatrics, The First Affiliated Hospital (Southwest Hospital) of Army Medical University, Chongqing, China (mainland)
| | - Wei Liao
- Department of Pediatrics, The First Affiliated Hospital (Southwest Hospital) of Army Medical University, Chongqing, China (mainland)
| |
Collapse
|