1
|
Mantha OL, Hankard R, Tea I, Schiphorst AM, Dumas JF, Berger V, Goupille C, Bougnoux P, De Luca A. N-3 Fatty Acid Supplementation Impacts Protein Metabolism Faster Than it Lowers Proinflammatory Cytokines in Advanced Breast Cancer Patients: Natural 15N/14N Variations during a Clinical Trial. Metabolites 2022; 12:metabo12100899. [PMID: 36295801 PMCID: PMC9609900 DOI: 10.3390/metabo12100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
While clinical evidence remains limited, an extensive amount of research suggests a beneficial role of n-3 polyunsaturated fatty acid supplementation in cancer treatment. One potential benefit is an improvement of protein homeostasis, but how protein metabolism depends on proinflammatory cytokines in this context remains unclear. Here, using the natural abundance of the stable isotopes of nitrogen as a marker of changes in protein metabolism during a randomized, double-blind, controlled clinical trial, we show that protein homeostasis is affected way faster than proinflammatory cytokines in metastatic breast cancer patients supplemented with n-3 polyunsaturated fatty acids. We provide some evidence that this response is unrelated to major changes in whole-body substrate oxidation. In addition, we demonstrate that more fatty acids were impacted by metabolic regulations than by differences in their intake levels during the supplementation. This study documents that the percentage of patients that complied with the supplementation decreased with time, making compliance assessment crucial for the kinetic analysis of the metabolic and inflammatory responses. Our results highlight the time-dependent nature of metabolic and inflammatory changes during long-chain n-3 fatty acid supplementation.
Collapse
Affiliation(s)
- Olivier L. Mantha
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
- Correspondence:
| | - Régis Hankard
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
| | - Illa Tea
- Nantes University, CNRS, CEISAM, UMR6230, F-44000 Nantes, France
| | | | - Jean-François Dumas
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
| | - Virginie Berger
- Department of Patient Education, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| | - Caroline Goupille
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
- Department of Gynecology, Centre Hospitalier Régional Universitaire de Tours, Hôpital Bretonneau, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Philippe Bougnoux
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
| | - Arnaud De Luca
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
| |
Collapse
|
2
|
Stable Isotope Abundance and Fractionation in Human Diseases. Metabolites 2021; 11:metabo11060370. [PMID: 34207741 PMCID: PMC8228638 DOI: 10.3390/metabo11060370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
The natural abundance of heavy stable isotopes (13C, 15N, 18O, etc.) is now of considerable importance in many research fields, including human physiology. In fact, it varies between tissues and metabolites due to isotope effects in biological processes, that is, isotope discriminations between heavy and light isotopic forms during enzyme or transporter activity. The metabolic deregulation associated with many diseases leads to alterations in metabolic fluxes, resulting in changes in isotope abundance that can be identified easily with current isotope ratio technologies. In this review, we summarize the current knowledge on changes in natural isotope composition in samples (including various tissues, hair, plasma, saliva) found in patients compared to controls, caused by human diseases. We discuss the metabolic origin of such isotope fractionations and highlight the potential of using isotopes at natural abundance for medical diagnosis and/or prognostic.
Collapse
|
3
|
Mantha OL, Goupille C, Dumas JF, Robins R, Bougnoux P, Hankard R, De Luca A. Natural isotopic abundances as markers of compliance in clinical trials. Am J Clin Nutr 2020; 111:1109-1110. [PMID: 32367119 DOI: 10.1093/ajcn/nqaa053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Olivier L Mantha
- From INSERM UMR1069 "Nutrition, Croissance et Cancer", Tours, France
| | - Caroline Goupille
- From INSERM UMR1069 "Nutrition, Croissance et Cancer", Tours, France
| | - Jean-François Dumas
- From INSERM UMR1069 "Nutrition, Croissance et Cancer", Tours, France.,Université François-Rabelais, Tours, France
| | - Richard Robins
- From INSERM UMR1069 "Nutrition, Croissance et Cancer", Tours, France.,Elucidation of Biosynthesis by Isotopic Spectrometry Group, CEISAM, CNRS-University of Nantes, UMR6230, Nantes, France
| | - Philippe Bougnoux
- From INSERM UMR1069 "Nutrition, Croissance et Cancer", Tours, France.,Université François-Rabelais, Tours, France
| | - Régis Hankard
- From INSERM UMR1069 "Nutrition, Croissance et Cancer", Tours, France.,Université François-Rabelais, Tours, France
| | - Arnaud De Luca
- From INSERM UMR1069 "Nutrition, Croissance et Cancer", Tours, France
| |
Collapse
|