1
|
Fikry H, Saleh LA, Mohammed OA, Doghish AS, Elsakka EGE, Hashish AA, Alfaifi J, Alamri MMS, Adam MIE, Atti MA, Mahmoud FA, Alkhalek HAA. Agmatine alleviates diabetic-induced hyposalivation in rats: A histological and biochemical study. Life Sci 2024; 359:123220. [PMID: 39505296 DOI: 10.1016/j.lfs.2024.123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Diabetic patients commonly experience hyposalivation, which can cause challenges with eating, swallowing, dry mouth, and speaking. It also raises the likelihood of developing periodontal disease. This study aimed to evaluate if agmatine could improve the rate of salivation in rats with hyposalivation induced by streptozotocin (STZ). Five groups of Wistar rats were utilized with 10 animals in each group. They were classified as follows; Negative control group (G1), agmatine (G2) group, and Nicotinamide (NA)-STZ (G3) group; received a single intraperitoneal dose of 65 mg/kg of STZ after NA injection. NA was administered to protect residual β cells and enhance their insulin secretion; NA-STZ + Metformin (G4) Metformin-treated diabetic group; at day 10 diabetic rats received 50mg/kg orally for 28 days, and NA-STZ + Agmatine (G5) at day 10 diabetic rats received a daily intraperitoneal dose of 300 mg/kg Agmatine for 28 days. The salivary flow rate was assessed weekly. Then, the animals were euthanized, both parotid (PG) and submandibular (SMG) salivary glands were dissected, and the following parameters were assessed; salivary glands' histopathology, aquaporin 5 (AQP5), caspase-3, E-cadherin expressions, inflammatory markers and finally, salivary glands' oxidative stress status. Agmatine has alleviated the salivary glands' dysfunction in STZ-induced diabetic rats. It normalized diabetes mellitus-associated salivary glands' abnormalities including histopathological abnormalities, decreased AQP5 and E-cadherin expressions, increased caspase-3 expression, and oxidative stress and inflammatory parameters. Agmatine alleviates diabetes mellitus-associated hyposalivation. It can promote PGs and SMGs function through its histological and AQP5 expression improvements.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology. Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Osama A Mohammed
- Department of Clinical Pharmacology. Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Abdullah A Hashish
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed A Atti
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyiah, Riyadh 13713, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Faten A Mahmoud
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hadwa Ali Abd Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
2
|
Sampaio LV, Landim HRDS, Vazão AR, Fiais GA, de Freitas RN, Veras ASC, Dornelles RCM, Fakhouri WD, Lima RR, Teixeira GR, Chaves-Neto AH. Effects of a supraphysiological dose of testosterone cypionate on salivary gland function in adult male Wistar rats. J Steroid Biochem Mol Biol 2024; 243:106587. [PMID: 39004377 DOI: 10.1016/j.jsbmb.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
The abusive use of anabolic androgenic steroids has become a serious health problem worldwide, but its effects on oral health are still poorly understood. Therefore, the objective of this study was to evaluate the effects of a supraphysiological dose of testosterone cypionate (TC) on salivary biochemical, histomorphology, immunohistochemistry, and redox state parameters of parotid and submandibular glands. Twenty male Wistar rats, 12 weeks old, were divided into two groups (n=10/group): a control group and TC group, which received a dose of 20 mg/kg, once a week, for 6 weeks. Post treatment, the saliva and glands were collected. A supraphysiological dose of TC increased plasma and salivary testosterone concentrations. Although TC did not alter salivary flow, pH, and buffering capacity, the treatment increased the salivary secretion of total protein and reduced amylase, calcium, phosphate, and potassium. TC reduced the connective tissue area in the parotid gland and acinar area of the submandibular gland, while increasing the granular convoluted tubule area in the submandibular gland. Proliferating cell nuclear antigen was higher in the acinar cells of the submandibular glands from the TC group. Moreover, TC increased concentrations of total oxidant capacity and damaged lipids in both salivary glands, while total antioxidant activity and uric acid were lower in the submandibular gland, and reduced glutathione was higher in both glands. Superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the parotid gland, while only glutathione peroxidase activity was lower in the submandibular gland of the TC group. In conclusion, TC abuse may be a potential factor for dysfunction of the parotid and submandibular glands, becoming a risk factor for the oral and systemic health of users.
Collapse
Affiliation(s)
- Larissa Victorino Sampaio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | | | - Arieli Raymundo Vazão
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Postgraduate Program in Sciences, Pediatric Oral Health, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Rayara Nogueira de Freitas
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Postgraduate Program in Sciences, Pediatric Oral Health, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Allice Santos Cruz Veras
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Rita Cassia Menegatti Dornelles
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para (UFPA), Belem, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil.
| |
Collapse
|
3
|
Badawy AM, Ibrahim M, Taha M, Helal AI, Elmetwally AAM, El-Shenbaby I, Abubakr S, Hussin E, Sakr NH, Baokbah TAS, Farage AE. Melatonin Mitigates Cisplatin-Induced Submandibular Gland Damage by Inhibiting Oxidative Stress, Inflammation, Apoptosis, and Fibrosis. Cureus 2024; 16:e68515. [PMID: 39364499 PMCID: PMC11447767 DOI: 10.7759/cureus.68515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The study aims to examine the possible effect of melatonin against cisplatin-induced submandibular degeneration in experimental rats exploring its ameliorative mechanisms. METHODS Rats were classified into four experimental groups; control group; melatonin group; cisplatin group; and cisplatin+melatonin group. Submandibular tissues were collected. Biochemical, histopathological, and immunohistopathological examination and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis were performed. RESULTS The results indicate that intraperitoneal administration of melatonin (30 mg/kg body weight) alongside cisplatin significantly elevated submandibular glands (SMG) and reduced glutathione (GSH) and superoxide dismutase (SOD) levels (p < 0.001), while it reduced malondialdehyde (MDA) levels, NF-κB gene expression, the protein level of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), immunoexpression of low-dose cyclooxygenase-2 (Cox-2), and CD68. Moreover, melatonin reduced immune and gene expression of alpha-smooth muscle actin (α-SMA), immunoexpression of caspase-3, and gene expression of Bax in comparison to the cisplatin group. CONCLUSION Melatonin attenuated cisplatin-induced submandibular destruction alleviating SMG oxidative stress, inflammation, and fibrosis in addition to halting cellular apoptosis, sheds light on its usage in clinical application.
Collapse
Affiliation(s)
- Alaa M Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Mohie Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqaa University, Zarqa, JOR
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Medhat Taha
- Department of Anatomy, Umm Al-Qura University, Al-Qunfudhah, SAU
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Azza I Helal
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafr El Sheikh, EGY
| | | | - Ibrahim El-Shenbaby
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Sara Abubakr
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Emadeldeen Hussin
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | - Noha Hammad Sakr
- Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafr El Sheikh, EGY
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, Umm Al-Qura University, Al-Qunfudhah, SAU
| | - Amira E Farage
- Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafr El Sheikh, EGY
| |
Collapse
|
4
|
Elzainy A, El Sadik A, Altowayan WM. Comparison between the Regenerative and Therapeutic Impacts of Bone Marrow Mesenchymal Stem Cells and Adipose Mesenchymal Stem Cells Pre-Treated with Melatonin on Liver Fibrosis. Biomolecules 2024; 14:297. [PMID: 38540717 PMCID: PMC10968153 DOI: 10.3390/biom14030297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The distinctive feature of liver fibrosis is the progressive replacement of healthy hepatic cells by the extracellular matrix protein, which is abundant in collagen I and III, with impaired matrix remodeling. The activation of myofibroblastic cells enhances the fibrogenic response of complex interactions of hepatic stellate cells, fibroblasts, and inflammatory cells to produce the excessive deposition of the extracellular protein matrix. This process is activated by multiple fibrogenic mediators and cytokines, such as TNF-α and IL-1β, accompanied with a decrease in the anti-fibrogenic factor NF-κβ. Mesenchymal stem cells (MSCs) represent a promising therapy for liver fibrosis, allowing for a more advanced regenerative influence when cultured with extrinsic or intrinsic proliferative factors, cytokines, antioxidants, growth factors, and hormones such as melatonin (MT). However, previous studies showed conflicting findings concerning the therapeutic effects of adipose (AD) and bone marrow (BM) MSCs; therefore, the present work aimed to conduct a comparative and comprehensive study investigating the impact of MT pre-treatment on the immunomodulatory, anti-inflammatory, and anti-apoptotic effects of AD- and BM-MSCs and to critically analyze whether MT-pre-treated AD-MSCs and BM-MSCs reveal equal or different therapeutic and regenerative potentials in a CCl4-injured liver experimental rat model. MATERIALS AND METHODS Six groups of experimental rats were used, with ten rats in each group: group I (control group), group II (CCl4-treated group), group III (CCl4- and BM-MSC-treated group), group IV (CCl4 and MT-pre-treated BM-MSC group), group V (CCl4- and AD-MSC-treated group), and group VI (CCl4 and MT-pre-treated AD-MSC group). Liver function tests and the gene expression of inflammatory, fibrogenic, apoptotic, and proliferative factors were analyzed. Histological and immunohistochemical changes were assessed. RESULTS The present study compared the ability of AD- and BM-MSCs, with and without MT pre-treatment, to reduce hepatic fibrosis. Both types of MSCs improved hepatocyte function by reducing the serum levels of ALT, aspartate aminotransferase (AST), alkaline phosphatase (AKP), and total bilirubin (TBIL). In addition, the changes in the hepatocellular architecture, including the hepatocytes, liver sinusoids, central veins, portal veins, biliary ducts, and hepatic arteries, showed a decrease in hepatocyte injury and cholestasis with a reduction in inflammation, apoptosis, and necrosis of the hepatic cells, together with an inhibition of liver tissue fibrosis. These results were augmented by an analysis of the expression of the pro-inflammatory cytokines TNFα and IL-1β, the anti-fibrogenic factor NF-κβ, the apoptotic factor caspase-3, and the proliferative indicators antigen Ki-67 and proliferating cell nuclear antigen (PCNA). These findings were found to be statistically significant, with the restoration of normal parameters in the rats that received AD-MSCs pre-treated with MT, denoting optimal regenerative and therapeutic effects. CONCLUSIONS AD-MSCs pre-treated with MT are the preferred choice in improving hepatic fibrosis and promoting the therapeutic and regenerative ability of liver tissue. They represent a very significant tool for future stem cell use in the tissue regeneration strategy for the treatment of liver diseases.
Collapse
Affiliation(s)
- Ahmed Elzainy
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Abir El Sadik
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Waleed Mohammad Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Abd-Elmonsif NM, El-Zainy MA, Rabea AA, Fathy Mohamed IA. The Prospective Effect of Cinnamon and Chia on Submandibular Salivary Glands After Ciprofloxacin Administration in Albino Rats (Histological, Histochemical, and Ultrastructural Study). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-18. [PMID: 35788256 DOI: 10.1017/s1431927622012119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (CPFX®) is potent fluoroquinolone but has severe side effects. Cinnamon (CIN) and chia seeds are potent antioxidants. The current work aimed to compare the effect of CIN extract and chia seeds on CPFX®-treated submandibular salivary glands (SMGs). Thirty-two male albino rats were divided into four groups: Group 1: received saline. Group 2: received CPFX®. Group 3: received CIN extract after 4 h of CPFX® administration. Group 4: received ground chia seeds after 4 h of CPFX® administration. After 10 days, histological, histochemical, and ultrastructural examinations were done. Different examinations illustrated normal features of SMG in Groups 1 and 3. Group 2 showed degenerative signs. Group 4 showed normal features in some areas. Statistical results illustrated that Group 2 had highest mean vacuolation area%. Highest mean of PAS optical density (OD) was for Group 2. Concerning mercuric bromophenol blue stain OD; Group 1 showed highest mean OD. CPFX® has the deteriorative effect on SMG structure and ultrastructure. It leads to increased levels of glycosaminoglycans (GAGs) and decreased levels of total proteins. CIN extract showed more ameliorative effect compared to chia seeds.
Collapse
Affiliation(s)
| | | | - Amany A Rabea
- Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | | |
Collapse
|
7
|
El Shahawy M, El Deeb M. Assessment of the possible ameliorative effect of curcumin nanoformulation on the submandibular salivary gland of alloxan-induced diabetes in a rat model (Light microscopic and ultrastructural study). Saudi Dent J 2022; 34:375-384. [PMID: 35814842 PMCID: PMC9263756 DOI: 10.1016/j.sdentj.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Nowadays, attention is directed to herbal treatments in an attempt to lessen the adverse effects of diabetes. Nanoformulation of curcumin (NC) was shown to enhance stability and water solubility compared to native curcumin. Objective To examine the effect of different NC concentrations on the histopathological structure of the submandibular salivary gland of diabetic rats. Methods 28 rats were divided equally into 4 groups. Group I: Control group, Group II (diabetic), III (diabetic + nanocurcumin low dose), and IV (diabetic + nanocurcumin high dose): Rats of groups II, III and IV were injected with a single dose of alloxan (140 mg/kg) to induce diabetes. After 7 days, groups III and IV were treated for 6 weeks with NC (100 mg/kg/day) for group III, and (200 mg/kg/day) for group IV. Submandibular salivary glands were assessed histologically, immunohistochemically using α smooth muscle actin (α SMA) and ultrastructurally. Results Diabetic samples showed destruction of parenchymal elements of the gland, with thick fiber bundles encircling the excretory ducts and minimal reaction for α SMA. Amelioration of the gland's architecture was detected in groups III and IV with reduction of collagen deposition and elevation of positive immunoreactivity to α SMA. Conclusion NC profoundly repaired the induced diabetic histopathological and ultrastructural alterations of the gland in a dose dependent manner.
Collapse
Key Words
- DM, diabetes mellitus
- Diabetes
- H&E, Hematoxylin and Eosin
- Masson trichrome
- NC, nanocurcumin
- NHD, nanocurcumin high dose
- NLD, nanocurcumin low dose
- Nanocurcumin
- RER, rough endoplasmic reticulum
- ROS, reactive oxygen species
- SD, standard deviation
- Submandibular salivary glands
- TEM, transmission electron microscope
- α SMA
- α SMA, α Smooth Muscle Actin
Collapse
Affiliation(s)
- Maha El Shahawy
- Associate Professor, Oral Biology Department, Faculty of Dentistry, Minia University, Egypt
| | - Mona El Deeb
- Professor, Oral Biology Department, Faculty of Oral & Dental Medicine, Future University in Egypt (FUE), Egypt
| |
Collapse
|
8
|
Nascimento PC, Aragão WAB, Bittencourt LO, Silva MCF, Crespo-Lopez ME, Lima RR. Salivary parameters alterations after early exposure to environmental methylmercury: A preclinical study in offspring rats. J Trace Elem Med Biol 2021; 68:126820. [PMID: 34293649 DOI: 10.1016/j.jtemb.2021.126820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Methylmercury (MeHg) is still considered a global pollutant of major concern; thus, it becomes relevant to investigate and validate alternative diagnostic methods to track early-life human exposure. This study aimed to evaluate the salivary parameters and to characterize potential mechanisms of oxidative damage on the salivary glands (SG) of offspring rats after pre- and postnatal environmental-experimental MeHg exposure. METHODS Pregnant Wistar rats were daily exposed to 40 μg/kg MeHg during both gestational and lactation periods. Then, the saliva of offspring rats was analyzed in terms of flow rate, amylase activity, and total protein concentration. The SG of the offspring rats were dissected to perform the oxidative biochemistry analyses of antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO), and nitrite levels. RESULTS Exposure to MeHg significantly decreased the ACAP, increased LPO and nitrite levels, decreased salivary flow rate, amylase activity, and total protein concentration. CONCLUSION Saliva analyses can predict damages induced by early-life MeHg exposure and may be used as an auxiliary diagnostic method.
Collapse
Affiliation(s)
- Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil.
| |
Collapse
|
9
|
Hassabou NF, Elseweidy MM. Histopathological changes in submandibular gland and dorsal tongue of experimental rats due to prolonged tramadol intake focusing on novel modulatory effect of 10-dehydrogingerdione. Arch Oral Biol 2021; 130:105223. [PMID: 34371226 DOI: 10.1016/j.archoralbio.2021.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This project aims to develop a framework to illustrate the degenerative effects induced by prolonged tramadol intake in salivary glands and tongue tissues. We strive in this work to investigate the probable role of 10-dehydrogingerdione (10-DHGD) in regeneration of these tissues. DESIGN Forty male albino rats were designated for the study and categorized into four groups. Group (1) received no drugs and served as normal control group. Group (2) received tramadol intra peritoneal (20 mg /kg) body weight daily for 45 days. Group (3) received freshly prepared 10-DHGD orally in a dose level (10 mg /kg). Group (4) received combination of tramadol and 10 DHGD for 45 days. Histological examination is that routine testing that was done in all studied subjects to demonstrate any cytological changes with hematoxylin and eosin (H&E) in the submandibular glands and dorsal tongue tissues along with histochemical investigation using periodic acid-Schiff (PAS) and immunohistochemical presentation of Caspase-3. RESULTS Submandibular salivary glands and dorsal tongue tissues showed degenerative changes in tramadol treated group while control and 10-DHGD groups presented with no cytological or morphological changes. Histochemical investigation revealed marked reduction in PAS staining reaction in tramadol group as compared to other studied groups. Regarding to immunoreactivity of caspase-3 when all groups were compared, the differences in mean values of area percentage were statistically significant. CONCLUSIONS Tramadol provoked oxidative damage and apoptosis in oral tissues, which significantly decreased by 10-DHGD intake as it may exert an ameliorative effect that help alleviating these degenerative effects.
Collapse
Affiliation(s)
- Nadia Fathy Hassabou
- Oral and Maxillofacial Histopathology Department, Faculty of Dentistry, October 6 University, Giza, Egypt.
| | - Mohamed M Elseweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
10
|
Fouani M, Basset CA, Jurjus AR, Leone LG, Tomasello G, Leone A. Salivary gland proteins alterations in the diabetic milieu. J Mol Histol 2021; 52:893-904. [PMID: 34212290 PMCID: PMC8487876 DOI: 10.1007/s10735-021-09999-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Salivary glands are considered the chief exocrine glands of the mouth and physiologically contribute to the maintenance of the homeostasis of the oral cavity. They consist of the parotid, submandibular and sublingual glands, which come in pairs and are collectively called the major glands, and the minor glands, which are much smaller and are dispersed throughout the buccal cavity. Salivary glands are distinguished by their size, amount of saliva secretion and their location in the oral cavity. Salivary glands pathophysiology has been a subject of interest in various worldwide metabolic disorders, including diabetes mellitus. Diabetes mellitus (DM), a global health concern, with a pathological imprint involved in vasculature, promotes microvascular and macrovascular complications among which periodontitis ranks sixth. Indeed, DM has also been directly associated with oral health lesions. Specifically, salivary glands in the context of diabetes have been a focal point of study and emphasis in the research field. There is evidence that relates salivary secretion content and diabetes progression. In this review, we present all the reported evidence of the deregulation of specific salivary proteins associated with the progression of diabetes in parallel with changes in salivary gland morphology, cellular architecture, and salivary secretion and composition more generally.
Collapse
Affiliation(s)
- Malak Fouani
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Charbel A Basset
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Abdo R Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Giovanni Tomasello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy.
| |
Collapse
|
11
|
Elsherbini AM, Maysarah NM, El-Sherbiny M, Al-Gayyar MM, Elsherbiny NM. Glycyrrhizic acid ameliorates sodium nitrite-induced lung and salivary gland toxicity: Impact on oxidative stress, inflammation and fibrosis. Hum Exp Toxicol 2021; 40:707-721. [PMID: 33030083 DOI: 10.1177/0960327120964555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite wide application of sodium nitrite (SN) as food additive, it exhibits considerable side effects on various body organs at high dose or chronic exposure. The aim of this study was to test whether Glycyrrhizic acid (GA) could ameliorate SN-induced toxicity in lung and submandibular salivary gland (SMG). A sample size of 30 adult male albino rats was randomly allocated into 3 groups. Group 1 served as control group. Rats were treated orally with 80 mg/kg of SN in group 2 or SN preceded by (15 mg/kg) GA in group 3. Lung & SMG tissues were used for oxidative stress assessment, examination of histopathological changes, fibrosis (MTC, TGF-β and α-SMA) and inflammation (TNF-α, IL-1β and CD-68). Concurrent administration of GA ameliorated pulmonary and salivary SN-induced toxicity via restoring the antioxidant defense mechanisms with reduction of MDA levels. GA reduced the key regulators of fibrosis TGF-β and α-SMA and collagen deposition. In addition to reduction of inflammatory cytokine (TNF-α, IL-1β) and macrophages recruitments, GA amended both pulmonary and salivary morphological changes. The present study proposed GA as a promising natural herb with antioxidant, anti-inflammatory and antifibrotic effects against pulmonary and salivary SN-induced toxicity.
Collapse
Affiliation(s)
- Amira M Elsherbini
- Oral Biology, Faculty of Dentistry, 68779Mansoura University, Mansoura, Egypt
| | - Nadia M Maysarah
- Department of Pharmacology and Toxicology, College of Pharmacy, 89660Qassim University, Buraydah, Saudi Arabia
| | - Mohamed El-Sherbiny
- Anatomy Department, Faculty of Medicine, 68779Mansoura University, Mansoura, Egypt
- Anatomy Department, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Mohammed Mh Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, 68779Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, 68779Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
12
|
Liu J, Song G, Meng T, Zhao G, Si S. The effect of gestational diabetes on identification of key genes and pathways in human umbilical vein endothelial cell by integrated bioinformatics analysis. J OBSTET GYNAECOL 2020; 41:881-887. [PMID: 33228420 DOI: 10.1080/01443615.2020.1819211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Maternal diabetes may lead to long-term risks for the offspring. The study aims at identifying the potential crucial genes and pathways associated with foetal metabolism and malformation of gestational diabetes mellitus (GDM). Gene Expression Series 49524 and 87295 were downloaded from Gene Expression Omnibus database, including eight from GDM and eight from non-GDM. A total of 35 differentially expressed genes were identified. Gene ontology functional annotation and signalling pathway analyses were performed. Four hub genes were identified by protein-protein interaction network: SHH, E2F1, STAT1, and HOXA9. The four hub genes were assessed by western blot and real-time quantitative PCR in clinical samples. The results of this data mining and integration help to reveal the pathophysiologic and molecular mechanism imprinted in primary umbilical cord-derived cells from GDM offspring. These genes and pathways identified are potential stratification biomarkers and provide further insight for developing therapeutic intervention for the offspring of diabetic mothers.Impact statementWhat is already known on this subject? Maternal diabetes may lead to long-term risks for the offspring. A high glucose environment might change the umbilical cord expression of genes implicated in foetal metabolism and development. However, underlying molecular mechanisms have not been investigated thoroughly.What do the results of this study add? GO functional annotation showed that the biological functions of differentially expressed genes mainly involved in metanephros development, salivary gland morphogenesis, fat cell differentiation, vasculogenesis, muscle cell proliferation, heart morphogenesis and Wnt signalling pathway. Signalling pathway analyses found that these differentially expressed genes mainly implicated in the apoptosis, cell cycle, Hedgehog, P53, and NOTCH signalling pathway. Four hub genes were identified by protein-protein interaction network: SHH, E2F1, STAT1 and HOXA9.What are the implications of these findings for clinical practice and/or further research? The genes and pathways identified in the present study are potential stratification biomarkers and provide further insight for developing therapeutic intervention for the offspring of diabetic mothers.
Collapse
Affiliation(s)
- Jing Liu
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Song
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ge Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Si Si
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
D’Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020; 9:cells9061547. [PMID: 32630469 PMCID: PMC7349754 DOI: 10.3390/cells9061547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren's syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Osama A. Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
- Correspondence: ; Tel.: +32-2-5556210
| |
Collapse
|
14
|
García-Ojalvo A, Berlanga Acosta J, Figueroa-Martínez A, Béquet-Romero M, Mendoza-Marí Y, Fernández-Mayola M, Fabelo-Martínez A, Guillén-Nieto G. Systemic translation of locally infiltrated epidermal growth factor in diabetic lower extremity wounds. Int Wound J 2019; 16:1294-1303. [PMID: 31429187 DOI: 10.1111/iwj.13189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcer is one of the most frightened diabetic complications leading to amputation disability and early mortality. Diabetic wounds exhibit a complex networking of inflammatory cytokines, local proteases, and reactive oxygen and nitrogen species as a pathogenic polymicrobial biofilm, overall contributing to wound chronification and host homeostasis imbalance. Intralesional infiltration of epidermal growth factor (EGF) has emerged as a therapeutic alternative to diabetic wound healing, reaching responsive cells while avoiding the deleterious effect of proteases and the biofilm on the wound's surface. The present study shows that intralesional therapy with EGF is associated with the systemic attenuation of pro-inflammatory markers along with redox balance recovery. A total of 11 diabetic patients with neuropathic foot ulcers were studied before and 3 weeks after starting EGF treatment. Evaluations comprised plasma levels of pro-inflammatory, redox balance, and glycation markers. Pro-inflammatory markers such as erythrosedimentation rate, C-reactive protein, interleukin-6, soluble FAS, and macrophage inflammatory protein 1-alpha were significantly reduced by EGF therapy. Oxidative capacity, nitrite/nitrate ratio, and pentosidine were also reduced, while soluble receptor for advanced glycation end-products significantly increased. Overall, our results indicate that the local intralesional infiltration of EGF translates in systemic anti-inflammatory and antioxidant effects, as in attenuation of the glycation products' negative effects.
Collapse
Affiliation(s)
- Ariana García-Ojalvo
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Jorge Berlanga Acosta
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Alain Figueroa-Martínez
- Diabetic Foot Ulcer Service, National Institute of Angiology and Vascular Surgery, Salvador Allende Hospital, Havana, Cuba
| | - Mónica Béquet-Romero
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yssel Mendoza-Marí
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maday Fernández-Mayola
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Amirelia Fabelo-Martínez
- Diabetic Foot Ulcer Service, National Institute of Angiology and Vascular Surgery, Salvador Allende Hospital, Havana, Cuba
| | - Gerardo Guillén-Nieto
- Wound Healing and Cytoprotection Group, Department of Pharmaceuticals, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|