1
|
Kassotis CD, Vom Saal FS, Babin PJ, Lagadic-Gossmann D, Le Mentec H, Blumberg B, Mohajer N, Legrand A, Munic Kos V, Martin-Chouly C, Podechard N, Langouët S, Touma C, Barouki R, Kim MJ, Audouze K, Choudhury M, Shree N, Bansal A, Howard S, Heindel JJ. Obesity III: Obesogen assays: Limitations, strengths, and new directions. Biochem Pharmacol 2022; 199:115014. [PMID: 35393121 PMCID: PMC9050906 DOI: 10.1016/j.bcp.2022.115014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of a role for environmental contaminants in disrupting metabolic health in both humans and animals. Despite a growing need for well-understood models for evaluating adipogenic and potential obesogenic contaminants, there has been a reliance on decades-old in vitro models that have not been appropriately managed by cell line providers. There has been a quick rise in available in vitro models in the last ten years, including commercial availability of human mesenchymal stem cell and preadipocyte models; these models require more comprehensive validation but demonstrate real promise in improved translation to human metabolic health. There is also progress in developing three-dimensional and co-culture techniques that allow for the interrogation of a more physiologically relevant state. While diverse rodent models exist for evaluating putative obesogenic and/or adipogenic chemicals in a physiologically relevant context, increasing capabilities have been identified for alternative model organisms such as Drosophila, C. elegans, zebrafish, and medaka in metabolic health testing. These models have several appreciable advantages, including most notably their size, rapid development, large brood sizes, and ease of high-resolution lipid accumulation imaging throughout the organisms. They are anticipated to expand the capabilities of metabolic health research, particularly when coupled with emerging obesogen evaluation techniques as described herein.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States.
| | - Frederick S Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, United States
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Helene Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Nicole Mohajer
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Antoine Legrand
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Charbel Touma
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, Paris, France
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Nitya Shree
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, ACT, 2611, Australia
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| |
Collapse
|
2
|
Kimura A, Kamimura K, Ohkoshi-Yamada M, Shinagawa-Kobayashi Y, Goto R, Owaki T, Oda C, Shibata O, Morita S, Sakai N, Abe H, Yokoo T, Sakamaki A, Kamimura H, Terai S. Effects of a novel selective PPARα modulator, statin, sodium-glucose cotransporter 2 inhibitor, and combinatorial therapy on the liver and vasculature of medaka nonalcoholic steatohepatitis model. Biochem Biophys Res Commun 2022; 596:76-82. [PMID: 35121372 DOI: 10.1016/j.bbrc.2022.01.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Nonalcoholic steatohepatitis (NASH) is a disease entity with an increasing incidence, with involvement of several metabolic pathways. Various organs, including the liver, kidneys, and the vasculature, are damaged in NASH, indicating the urgent need to develop a standard therapy. Therefore, this study was conducted to investigate the effects of drugs targeting various metabolic pathways and their combinations on a high-fat diet (HFD)-induced NASH medaka model. METHODS To investigate the effects of drugs on vascular structures, the NASH animal model was developed using the fli::GFP transgenic medaka fed with HFD at 20 mg/fish daily. The physiological changes, histological changes in the liver, vascular structures in the fin, and serum biochemical markers were evaluated in a time-dependent manner after treatment with selective peroxisome proliferator-activated receptor α modulator (pemafibrate), statin (pitavastatin), sodium-glucose cotransporter 2 inhibitor (tofogliflozin), and their combinations. Furthermore, to determine the mechanisms underlying the effects, whole transcriptome sequencing was conducted using medaka liver samples. RESULTS Histological analyses revealed significant suppression of fat accumulation and fibrotic changes in the liver after treatment with drugs and their combinations. The expression levels of steatosis- and fibrosis-related genes were modified by the treatments. Moreover, the HFD-induced vascular damages in the fin exhibited milder changes after treatment with the drugs. CONCLUSION The effects of treating various metabolic pathways on the medaka body, liver, and vascular structures of the NASH medaka model were evidenced. Moreover, to our knowledge, this study is the first to report whole genome sequence and gene expression evaluation of medaka livers, which could be helpful in clarifying the molecular mechanisms of drugs.
Collapse
Affiliation(s)
- Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan; Department of General Medicine, Niigata University School of Medicine, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan.
| | - Marina Ohkoshi-Yamada
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Yoko Shinagawa-Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Ryo Goto
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Takashi Owaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Chiyumi Oda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Osamu Shibata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Shinichi Morita
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| |
Collapse
|