1
|
Pan Y, Luan X, Zeng F, Wang X, Qin S, Lu Q, He G, Gao Y, Sun X, Han X, He B, Song Y. Logic-gated tumor-microenvironment nanoamplifier enables targeted delivery of CRISPR/Cas9 for multimodal cancer therapy. Acta Pharm Sin B 2024; 14:795-807. [PMID: 38322334 PMCID: PMC10840398 DOI: 10.1016/j.apsb.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 02/08/2024] Open
Abstract
Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies. However, the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the biomarkers vary in a spatiotemporal-dependent manner with tumor progression. Here, we propose a self-amplifying logic-gated gene editing strategy for gene/H2O2-mediated/starvation multimodal cancer therapy. In this approach, a hypoxia-degradable covalent-organic framework (COF) is synthesized to coat a-ZIF-8 in which glucose oxidase (GOx) and CRISPR system are packaged. To intensify intracellular redox dyshomeostasis, DNAzymes which can cleave catalase mRNA are loaded as well. When the nanosystem gets into the tumor, the weakly acidic and hypoxic microenvironment degrades the ZIF-8@COF to activate GOx, which amplifies intracellular H+ and hypoxia, accelerating the nanocarrier degradation to guarantee available CRISPR plasmid and GOx release in target cells. These tandem reactions deplete glucose and oxygen, leading to logic-gated-triggered gene editing as well as synergistic gene/H2O2-mediated/starvation therapy. Overall, this approach highlights the biocomputing-based CRISPR delivery and underscores the great potential of precise cancer therapy.
Collapse
Affiliation(s)
- Yongchun Pan
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xuyuan Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Grünewald S, Stecklum M, Rizzo M, Rathjens J, Fiebig L, Zopf D. Effects of regorafenib on the mononuclear/phagocyte system and how these contribute to the inhibition of colorectal tumors in mice. Eur J Med Res 2023; 28:147. [PMID: 37013652 PMCID: PMC10069031 DOI: 10.1186/s40001-023-01099-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Regorafenib was previously shown to reduce tumor-associated macrophages and potently inhibit colony-stimulating factor 1 receptor (CSF1R), also known as CD115, in biochemical assays. The CSF1R signaling pathway is essential in the biology of the mononuclear/phagocyte system, which can promote the development of cancer. METHODS A deeper investigation of regorafenib's effects on CSF1R signaling was performed using preclinical in vitro and in vivo studies with syngeneic CT26 and MC38 mouse models of colorectal cancer. Peripheral blood and tumor tissue were analyzed mechanistically by flow cytometry using antibodies against CD115/CSF1R and F4/80 and by ELISA for chemokine (C-C motif) ligand 2 (CCL2) levels. These read-outs were correlated with drug levels for the detection of pharmacokinetic/pharmacodynamic relationships. RESULTS Potent inhibition of CSF1R by regorafenib and its metabolites M-2, M-4, and M-5 was confirmed in vitro in RAW264.7 macrophages. The dose-dependent growth inhibition of subcutaneous CT26 tumors by regorafenib was associated with a significant reduction in both the number of CD115hi monocytes in peripheral blood and the number of selective subpopulations of intratumoral F4/80hi tumor-associated macrophages. CCL2 levels were not affected by regorafenib in blood but increased in tumor tissue, which may contribute to drug resistance and prevent complete tumor remission. An inverse relationship between regorafenib concentration and the number of CD115hi monocytes and CCL2 levels was observed in peripheral blood, supporting the mechanistic involvement of regorafenib. CONCLUSIONS These findings may be clinically useful in optimizing drug dosing using blood-based pharmacodynamic markers and in identifying resistance mechanisms and ways to overcome them by appropriate drug combinations.
Collapse
Affiliation(s)
| | | | | | | | | | - Dieter Zopf
- Bayer AG, Berlin, Germany.
- Nuvisan ICB GmbH, Berlin, Germany.
| |
Collapse
|
3
|
Sun H, Li Y, Zhang Y, Zhao X, Dong X, Guo Y, Mo J, Che N, Ban X, Li F, Bai X, Li Y, Hao J, Zhang D. The relevance between hypoxia-dependent spatial transcriptomics and the prognosis and efficacy of immunotherapy in claudin-low breast cancer. Front Immunol 2023; 13:1042835. [PMID: 36685583 PMCID: PMC9846556 DOI: 10.3389/fimmu.2022.1042835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Hypoxia is an important characteristic of solid tumors. However, spatial transcriptomics (ST) of hypoxia-associated heterogeneity is not clear. Methods This study integrated Spatial Transcriptomics (ST) with immunofluorescence to demonstrate their spatial distribution in human claudin-low breast cancer MDA-MB-231 engraft. ST spots were clustered with differentially expression genes. The data were combined with hypoxia-specific marker and angiogenesis marker-labeled serial sections to indicate the spatial distribution of hypoxia and hypoxia-inducted transcriptional profile. Moreover, marker genes, cluster-specific hypoxia genes, and their co-essential relationship were identified and mapped in every clusters. The clinicopathological association of marker genes of hypoxia-dependent spatial clusters was explored in 1904 breast cancers from METABRIC database. Results The tumor from center to periphery were enriched into five hypoxia-dependent subgroups with differentially expressed genes, which were matched to necrosis, necrosis periphery, hypoxic tumor, adaptive survival tumor, and invasive tumor, respectively. Different subgroups demonstrated distinct hypoxia condition and spatial heterogeneity in biological behavior and signaling pathways. Cox regression analysis showed that the invasive tumor (cluster 0) and hypoxic tumor (cluster 6) score could be served as independent prognostic factors in claudin-low patients. KM analysis indicated that high invasive tumor (cluster 0) and hypoxic tumor (cluster 6) score was associated with poor prognoses of claudin-low patients. Further analysis showed that hypoxia-induced immune checkpoints, such as CD276 and NRP1, upregulation in invasive tumor to block infiltration and activation of B cells and CD8+ T cells to change tumor immune microenvironment. Discussion This study reveals hypoxia-dependent spatial heterogeneity in claudin-low breast cancer and highlights its potential value as a predictive biomarker of clinical outcomes and immunotherapy response. The molecules found in this study also provided potential molecular mechanisms and therapeutic targets for subsequent studies.
Collapse
Affiliation(s)
- Huizhi Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanhui Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yuhong Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xinchao Ban
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Jihui Hao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Simińska D, Korbecki J, Kojder K, Jeżewski D, Tarnowski M, Tomasiak P, Piotrowska K, Masztalewicz M, Kolasa A, Chlubek D, Baranowska-Bosiacka I. Androgen Receptor Expression in the Various Regions of Resected Glioblastoma Multiforme Tumors and in an In Vitro Model. Int J Mol Sci 2022; 23:13004. [PMID: 36361793 PMCID: PMC9655141 DOI: 10.3390/ijms232113004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 09/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant glioma, difficult to detect and with the lowest survival rates among gliomas. Its greater incidence among men and its higher survival rate among premenopausal women suggest that it may be associated with the levels of androgens. As androgens stimulate the androgen receptor (AR), which acts as a transcription factor, the aim of this study was the investigate the role of AR in the progression of GBM. The study was conducted on tissues collected from three regions of GBM tumors (tumor core, enhancing tumor region, and peritumoral area). In addition, an in vitro experiment was conducted on U-87 cells under various culture conditions (necrotic, hypoxic, and nutrient-deficient), mimicking the conditions in a tumor. In both of the models, androgen receptor expression was determined at the gene and protein levels, and the results were confirmed by confocal microscopy and immunohistochemistry. AR mRNA expression was higher under nutrient-deficient conditions and lower under hypoxic conditions in vitro. However, there were no differences in AR protein expression. No differences in AR mRNA expression were observed between the tested tumor structures taken from patients. No differences in AR mRNA expression were observed between the men and women. However, AR protein expression in tumors resected from patients was higher in the enhancing tumor region and in the peritumoral area than in the tumor core. In women, higher AR expression was observed in the peritumoral area than in the tumor core. AR expression in GBM tumors did not differ significantly between men and women, which suggests that the higher incidence of GBM in men is not associated with AR expression. In the group consisting of men and women, AR expression varied between the regions of the tumor: AR expression was higher in the enhancing tumor region and in the peritumoral area than in the tumor core, showing a dependence on tumor conditions (hypoxia and insufficient nutrient supply).
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Marta Masztalewicz
- Department of Neurology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Simultaneous Probing of Metabolism and Oxygenation of Tumors In Vivo Using FLIM of NAD(P)H and PLIM of a New Polymeric Ir(III) Oxygen Sensor. Int J Mol Sci 2022; 23:ijms231810263. [PMID: 36142177 PMCID: PMC9499414 DOI: 10.3390/ijms231810263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor cells are well adapted to grow in conditions of variable oxygen supply and hypoxia by switching between different metabolic pathways. However, the regulatory effect of oxygen on metabolism and its contribution to the metabolic heterogeneity of tumors have not been fully explored. In this study, we develop a methodology for the simultaneous analysis of cellular metabolic status, using the fluorescence lifetime imaging microscopy (FLIM) of metabolic cofactor NAD(P)H, and oxygen level, using the phosphorescence lifetime imaging (PLIM) of a new polymeric Ir(III)-based sensor (PIr3) in tumors in vivo. The sensor, derived from a polynorbornene and cyclometalated iridium(III) complex, exhibits the oxygen-dependent quenching of phosphorescence with a 40% longer lifetime in degassed compared to aerated solutions. In vitro, hypoxia resulted in a correlative increase in PIr3 phosphorescence lifetime and free (glycolytic) NAD(P)H fraction in cells. In vivo, mouse tumors demonstrated a high degree of cellular-level heterogeneity of both metabolic and oxygen states, and a lower dependence of metabolism on oxygen than cells in vitro. The small tumors were hypoxic, while the advanced tumors contained areas of normoxia and hypoxia, which was consistent with the pimonidazole assay and angiographic imaging. Dual FLIM/PLIM metabolic/oxygen imaging will be valuable in preclinical investigations into the effects of hypoxia on metabolic aspects of tumor progression and treatment response.
Collapse
|
6
|
Mashreghi M, Faal Maleki M, Askarizadeh A, Farshchi H, Farhoudi L, Nasrollahzadeh MS, Rezazade Bazaz M, Hadizadeh F, Jaafari MR. A novel and easy to prepare azo-based bioreductive linker and its application in hypoxia-sensitive cationic liposomal doxorubicin: Synthesis, characterization, in vitro and in vivo studies in mice bearing C26 tumor. Chem Phys Lipids 2022; 247:105226. [PMID: 35850240 DOI: 10.1016/j.chemphyslip.2022.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/01/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
This study designed and synthesized a cost-effective azo-based hypoxia-sensitive linker (AHSL) using commercially accessible, inexpensive raw materials and simple methods to apply in cationic nanoliposomes. Then, AHSL was post-inserted into the cationic liposome (Cat-lip), and PEG-Azo-Cat-lip was prepared and characterized using DLS. The decrease in the zeta-potential of formulation from + 18.4 mV for Cat-lip to + 6.1 mV and the increase in the size of the PEG-Azo-Cat-lip indicated the successful post insertion of AHSL into the liposomes. The Doxorubicin (Dox) release study showed that PEGylation results in a more stable PEG-Azo-Cat-lip than the Cat-lip. The increased cytotoxicity of the PEG-Azo-Cat-lip in the hypoxic condition also indicated the cleavage of the AHSL in the hypoxic environment. In vivo biodistribution using animal imaging has shown higher tumor accumulation of the MPEG-Azo-Cat-lip than Cat-lip during the 120 h of the study. The results of anti-tumor activities and biosafety of the formulations also showed the higher efficiency of the MPEG-Azo-Cat-lip compared with the Cat-lip. The results of this study indicated the antitumor efficacy of this hypoxia-sensitive which merits further investigation.
Collapse
Affiliation(s)
- Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Faal Maleki
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Helaleh Farshchi
- Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahda Sadat Nasrollahzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahere Rezazade Bazaz
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Dall'Olio FG, Marabelle A, Caramella C, Garcia C, Aldea M, Chaput N, Robert C, Besse B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 19:75-90. [PMID: 34642484 DOI: 10.1038/s41571-021-00564-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
Accumulating evidence suggests that a high tumour burden has a negative effect on anticancer immunity. The concept of tumour burden, simply defined as the total amount of cancer in the body, in contrast to molecular tumour burden, is often poorly understood by the wider medical community; nonetheless, a possible role exists in defining the optimal treatment strategy for many patients. Historically, tumour burden has been assessed using imaging. In particular, CT scans have been used to evaluate both the number and size of metastases as well as the number of organs involved. These methods are now often complemented by metabolic tumour burden, measured using the more recently developed 2-deoxy-2-[18F]-fluoro-D-glucose (FDG)-PET/CT. Serum-based biomarkers, such as lactate dehydrogenase, can also reflect tumour burden and are often also correlated with a poor response to immune-checkpoint inhibitors. Other circulating markers (such as circulating free tumour DNA and/or circulating tumour cells) are also attracting research interest as surrogate markers of tumour burden. In this Review, we summarize evidence supporting the utility of tumour burden as a biomarker to guide the use of immune-checkpoint inhibitors. We also describe data and provide perspective on the various tools used for tumour burden assessment, with a particular emphasis on future therapeutic strategies that might address the issue of inferior outcomes among patients with cancer with a high tumour burden.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Caroline Caramella
- Department of Radiology, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Camilo Garcia
- Department of Nuclear Medicine and Endocrine Oncology, Institut Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France.,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| | - Caroline Robert
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France. .,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.
| |
Collapse
|
8
|
Kiraga Ł, Kucharzewska P, Paisey S, Cheda Ł, Domańska A, Rogulski Z, Rygiel TP, Boffi A, Król M. Nuclear imaging for immune cell tracking in vivo – Comparison of various cell labeling methods and their application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Tumor mutation burden as a biomarker in resected gastric cancer via its association with immune infiltration and hypoxia. Gastric Cancer 2021; 24:823-834. [PMID: 33687617 DOI: 10.1007/s10120-021-01175-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor mutation burden (TMB) predicts immunotherapy efficacy in solid tumors. However, the biomarker role of TMB is still conflicting in resected tumors. We aimed to examine the association of TMB with prognosis and postoperative chemotherapy (CT) or radiochemotherapy (RCT) efficacy in resected gastric cancer (GC). METHODS Whole-exome sequencing (WES) was performed in 73 resected GC specimens. Validation cohorts included 352 patients from The Cancer Genome Atlas (TCGA) and 222 patients from the Asian Cancer Research Group (ACRG). Immune infiltration and hypoxia were evaluated by transcriptome data and immunohistochemistry assay. RESULTS TMB-high GC had favorable overall survival (OS) and disease-free survival (DFS), but the OS and DFS benefits with postoperative CT/RCT were more pronounced in TMB-low GC. These findings were consistent among all three cohorts and were maintained in the pooled cohort. Stratified by stages in the pooled cohort, stage III GC benefited from postoperative CT/RCT regardless of TMB level while stage Ib/II GC benefited from postoperative CT/RCT in TMB-low but not in TMB-high subgroup. TMB positively correlated with immune infiltration which was characterized by NK cell rather than CD8 + T cell enrichment. TMB-high GC was more hypoxic than TMB-low GC, and TMB-high stage Ib/II GC was the most hypoxic. CONCLUSIONS High TMB may predict favorable prognosis in resected GC but poor response to postoperative CT/RCT in stage Ib/II subgroup, which may be determined by TMB-associated immune infiltration and hypoxia, respectively.
Collapse
|
10
|
Self-preparation system using glucose oxidase-inspired nitroreductase amplification for cascade-responsive drug release and multidrug resistance reversion. Biomaterials 2021; 275:120927. [PMID: 34119887 DOI: 10.1016/j.biomaterials.2021.120927] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023]
Abstract
Early antitumor therapy is an important determinant of survival in patients with cancer. Utilization of specific pathological states, such as hypoxia, greatly promotes the development of intelligent drug delivery systems (DDSs) for targeted antitumor therapy. However, a slight decrease in oxygen levels in early-stage tumors is not sufficient to trigger hypoxia-responsive drug release. Nitroreductase (NTR) is overexpressed in bioreductive hypoxic cancers, and its expression level has been verified to be directly related to hypoxic status. Herein, using glucose oxidase (GOx) as an O2-consuming agent to exacerbate hypoxia, a cascade strategy of GOx-induced overexpression of NTR and amplified NTR-catalyzed release was proposed for early antitumor therapy. Briefly, NTR-sensitive p-nitrobenzyl chloroformate (PNZ-Cl) was adopted to conjugate with the polysaccharide chitosan (CS) and self-assemble into CS-PNZ-Cl micelles. These polymer micelles possess the dual abilities to specifically immobilize GOx and load mitoxantrone (MIT) to form the NTR-responsive nanocascade reactor GOx/MIT@CS-PNZ-Cl. First, as a "key", tumor hypoxia triggers the initial release of GOx, which serves as the O2-consuming agent when catalyzing its reaction with glucose, which is accompanied by H2O2 production. Depleted oxygen levels facilitate the expression of NTR, which in turn amplifies the capacity of the nanocascade reactor to decompose into secondary micelles for enhanced intratumoral permeation. GOx-inspired NTR amplification further elicits MIT release, realizing a synergistic "domino effect" cascade. In addition, upregulated H2O2 has been shown to effectively reverse GSH-mediated MIT resistance, reaching the superior tumor inhibition rate of 93.08%. This GOx-based NTR-responsive nanocascade reactor provides amplification of the bioreductive hypoxic tumor microenvironment for early antitumor therapy.
Collapse
|
11
|
Esteves M, Monteiro MP, Duarte JA. Role of Regular Physical Exercise in Tumor Vasculature: Favorable Modulator of Tumor Milieu. Int J Sports Med 2020; 42:389-406. [PMID: 33307553 DOI: 10.1055/a-1308-3476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tumor vessel network has been investigated as a precursor of an inhospitable tumor microenvironment, including its repercussions in tumor perfusion, oxygenation, interstitial fluid pressure, pH, and immune response. Dysfunctional tumor vasculature leads to the extravasation of blood to the interstitial space, hindering proper perfusion and causing interstitial hypertension. Consequently, the inadequate delivery of oxygen and clearance of by-products of metabolism promote the development of intratumoral hypoxia and acidification, hampering the action of immune cells and resulting in more aggressive tumors. Thus, pharmacological strategies targeting tumor vasculature were developed, but the overall outcome was not satisfactory due to its transient nature and the higher risk of hypoxia and metastasis. Therefore, physical exercise emerged as a potential favorable modulator of tumor vasculature, improving intratumoral vascularization and perfusion. Indeed, it seems that regular exercise practice is associated with lasting tumor vascular maturity, reduced vascular resistance, and increased vascular conductance. Higher vascular conductance reduces intratumoral hypoxia and increases the accessibility of circulating immune cells to the tumor milieu, inhibiting tumor development and improving cancer treatment. The present paper describes the implications of abnormal vasculature on the tumor microenvironment and the underlying mechanisms promoted by regular physical exercise for the re-establishment of more physiological tumor vasculature.
Collapse
Affiliation(s)
- Mário Esteves
- Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal.,Department of Physical Medicine and Rehabilitation, Hospital-Escola, Fernando Pessoa University, Gondomar, Portugal
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Jose Alberto Duarte
- CIAFEL - Faculty of Sport, University of Porto, Porto, Portugal.,Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| |
Collapse
|
12
|
Chen GG, Woo PYM, Ng SCP, Wong GKC, Chan DTM, van Hasselt CA, Tong MCF, Poon WS. Impact of metformin on immunological markers: Implication in its anti-tumor mechanism. Pharmacol Ther 2020; 213:107585. [PMID: 32473961 DOI: 10.1016/j.pharmthera.2020.107585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Metformin, an anti-hyperglycemic drug, has been known to have antitumor properties for around 15 years. Although there are a number of reports attributing the antitumor function of metformin to its impact on energy homeostasis and oxygen re-distribution in tumor microenvironment, detailed mechanisms remain largely unknown. In the past several years, there is an increasing number of publications indicating that metformin can affect various immunological components including lymphocytes, macrophages, cytokines and several key immunological molecules in both human and animal studies. These interesting results appear to be in line with emerging data that suggest associations between immune responses and energy homeostasis/oxygen re-distribution, which may explain effective impacts of metformin on immunotherapies against autoimmune diseases as well as cancers. This review article is to analyse and discuss recent development in the above areas with aim to justify metformin as a new adjuvant for immunotherapy against human cancers. We hope that our summary will help to optimize the application of metformin for various types of human cancers.
Collapse
Affiliation(s)
- George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Peter Y M Woo
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Stephanie C P Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - George K C Wong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Danny T M Chan
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Charles A van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Michael C F Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wai Sang Poon
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
13
|
Singh S, Mayengbam SS, Chouhan S, Deshmukh B, Ramteke P, Athavale D, Bhat MK. Role of TNFα and leptin signaling in colon cancer incidence and tumor growth under obese phenotype. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165660. [PMID: 31891805 DOI: 10.1016/j.bbadis.2019.165660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
Epidemiological studies over the last few decades have shown a strong influence of obesity on colon cancer risk and its progression. These studies have primarily focussed on the role of adipokines in driving cancer progression. We investigated the incidence of cancerous polyp formation and tumor progression in presence and absence of functional leptin along with exploring the role of tumor necrosis factor α (TNFα), under obese condition. By utilizing diet induced obese and genetically obese mice, carcinogen induced colon polyp formation was investigated. Experiments were performed using tumor tissues and cell lines to delineate the inter-relationship between leptin and TNFα. Data shown in this report indicates that in leptin knockdown obese mice, AOM/DSS induced polyps are smaller and lesser in numbers as compared to AOM/DSS induced polyps in diet induced obese mice. Further in vitro experiments suggest that abrogation of leptin associated pathways promote TNFα induced apoptosis. Mechanistically, we report that TNFα induces p53 independent cell death through up regulation of p53 upregulated modulator of apoptosis (PUMA). TNFα induced PUMA was inhibited upon pre- exposure of cells to leptin, prior to TNFα treatment. Collectively these results indicate that obesity due to leptin non-functionality facilitates TNFα induced colon cancer cell death.
Collapse
Affiliation(s)
- Snahlata Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | | | - Surbhi Chouhan
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Bhavana Deshmukh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Dipti Athavale
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|