1
|
Alyami AM, Kirimi MT, Neale SL, Mercer JR. Implantable Biosensors for Vascular Diseases: Directions for the Next Generation of Active Diagnostic and Therapeutic Medical Device Technologies. BIOSENSORS 2025; 15:147. [PMID: 40136944 PMCID: PMC11940410 DOI: 10.3390/bios15030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Key challenges such as atherosclerosis, in-stent restenosis, and maintaining arteriovenous access, pose urgent problems for effective treatments for both coronary artery disease and chronic kidney disease. The next generation of active implantables will offer innovative solutions and research opportunities to reduce the economic and human cost of disease. Current treatments rely on vascular stents or synthetic implantable grafts to treat vessels when they block such as through in-stent restenosis and haemodialysis graft failure. This is often driven by vascular cell overgrowth termed neointimal hyperplasia, often in response to inflammation and injury. The integration of biosensors into existing approved implants will bring a revolution in cardiovascular devices and into a promising new era. Biosensors that allow real-time vascular monitoring will provide early detection and warning of pathological cell growth. This will enable proactive wireless treatment outside of the traditional hospital settings. Ongoing research focuses on the development of self-reporting smart cardiovascular devices, which have shown promising results using a combination of virtual in silico modelling, bench testing, and preclinical in vivo testing. This innovative approach holds the key to a new generation of wireless data solutions and wireless powered implants to enhance patient outcomes and alleviate the burden on global healthcare budgets.
Collapse
Affiliation(s)
- Ali Mana Alyami
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK; (A.M.A.); (M.T.K.)
| | - Mahmut Talha Kirimi
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK; (A.M.A.); (M.T.K.)
| | - Steven L. Neale
- James Watt South Building, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | - John R. Mercer
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK; (A.M.A.); (M.T.K.)
| |
Collapse
|
2
|
Kirimi MT, Hoare D, Holsgrove M, Czyzewski J, Mirzai N, Mercer JR, Neale SL. Detection of Blood Clots Using a Whole Stent as an Active Implantable Biosensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304748. [PMID: 38342628 DOI: 10.1002/advs.202304748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Indexed: 02/13/2024]
Abstract
Many cardiovascular problems stem from blockages that form within the vasculature and often treatment includes fitting a stent through percutaneous coronary intervention. This offers a minimally invasive therapy but re-occlusion through restenosis or thrombosis formation often occurs post-deployment. Research is ongoing into the creation of smart stents that can detect the occurrence of further problems. In this study, it is shown that selectively metalizing a non-conductive stent can create a set of electrodes that are capable of detecting a build-up of material around the stent. The associated increase in electrical impedance across the electrodes is measured, testing the stent with blood clot to mimic thrombosis. It is shown that the device is capable of sensing different amounts of occlusion. The stent can reproducibly sense the presence of clot showing a 16% +/-3% increase in impedance which is sufficient to reliably detect the clot when surrounded by explanted aorta (one sample t-test, p = 0.009, n = 9). It is demonstrated that this approach can be extended beyond the 3D printed prototypes by showing that it can be applied to a commercially available stent and it is believed that it can be further utilized by other types of medical implants.
Collapse
Affiliation(s)
- Mahmut Talha Kirimi
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Daniel Hoare
- Institute of Cardiovascular and Medical Sciences/British Heart Foundation, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael Holsgrove
- BioElectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jakup Czyzewski
- BioElectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nosrat Mirzai
- BioElectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John R Mercer
- Institute of Cardiovascular and Medical Sciences/British Heart Foundation, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Steve L Neale
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
3
|
Hoare D, Kingsmore D, Holsgrove M, Russell E, Kirimi MT, Czyzewski J, Mirzai N, Kennedy S, Neale SL, Mercer JR. Realtime monitoring of thrombus formation in vivo using a self-reporting vascular access graft. COMMUNICATIONS MEDICINE 2024; 4:15. [PMID: 38316912 PMCID: PMC10844314 DOI: 10.1038/s43856-024-00436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) affects 10% of the global population costing over a hundred billion dollars per annum and leading to increased risk of cardiovascular disease. Many patients with CKD require regular haemodialyses. Synthetic arteriovenous grafts (AVG) are increasingly used to provide rapid vascular connection for dialysis. Initially, they have excellent patency rates but are critically limited by neointimal hyperplasia at the venous anastomosis, which drives subsequent thrombosis, graft failure and death. METHODS Here, we describe a system in which electrical impedance spectroscopy sensors are incorporated circumferentially into the wall of a synthetic arteriovenous graft. This is combined with an implantable radiotelemetry system for data transmission outside the patient. The system was tested using monolayers of endothelial and smooth muscle cells as well as swine blood and clots with explanted human carotid artery plaques. Sensor testing was then performed in vitro and the device was implanted in vivo in female swine. RESULTS The device can wirelessly report the accumulation of biological material, both cells and blood. Differences are also detected when comparing controls with pathological atheroma. In swine differences between blockage formation in a graft were remotely obtained and wireless reported. CONCLUSIONS Combining electrical impedance spectroscopy and an implantable radiotelemetry system enables graft surveillance. This has the potential to be used for early detection of venous stenosis and blood clot formation in real-time in vivo. In principle, the concept could apply to other cardiovascular diseases and vascular implantable devices.
Collapse
Affiliation(s)
- Daniel Hoare
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - David Kingsmore
- Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
| | - Michael Holsgrove
- Bioelectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ewan Russell
- Bioelectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mahmut T Kirimi
- Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
| | - Jakub Czyzewski
- Bioelectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nosrat Mirzai
- Bioelectronics Unit, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Kennedy
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Steven L Neale
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - John R Mercer
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Pérez P, Serrano-Viseas JA, Fernández-Scagliusi S, Martín-Fernández D, Huertas G, Yúfera A. Oscillation-Based Spectroscopy for Cell-Culture Monitorization. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.836669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological Impedance is a physical property related to the state and inherent evolution of biological samples. Among the existing impedance measurement methods, Oscillation-Based (OB) tests are a simple and smart solution to indirectly measure impedance correlated with the amplitude and frequency of the generated oscillation which are proportional to the sample under test. An OB test requires tuning of the system blocks to specifications derived from every measurement problem. The OB setup must be done to obtain the optimum measurement sensitivity for the specific constraints imposed by the system under test, electronic interfaces, and electrodes employed for test. This work proposes the extension of OB measurement systems to spectroscopy test, enabling a completely new range of applications for this technology without the restrictions imposed by setting a fixed frequency on the electrical oscillator. Some examples will be presented to the measurement of cell cultures samples, considering the corresponding circuit interfaces and electric models for the electrode-cell system. The proposed analysis method allows the selection of the best oscillator elements for optimum sensitivity range in amplitude and frequency oscillation values, when a specific cell culture is monitored for the OB system.
Collapse
|
5
|
Hoare D, Tsiamis A, Marland JRK, Czyzewski J, Kirimi MT, Holsgrove M, Russell E, Neale SL, Mirzai N, Mitra S, Mercer JR. Predicting Cardiovascular Stent Complications Using Self-Reporting Biosensors for Noninvasive Detection of Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105285. [PMID: 35322587 PMCID: PMC9130883 DOI: 10.1002/advs.202105285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Self-reporting implantable medical devices are the future of cardiovascular healthcare. Cardiovascular complications such as blocked arteries that lead to the majority of heart attacks and strokes are frequently treated with inert metal stents that reopen affected vessels. Stents frequently re-block after deployment due to a wound response called in-stent restenosis (ISR). Herein, an implantable miniaturized sensor and telemetry system are developed that can detect this process, discern the different cell types associated with ISR, distinguish sub plaque components as demonstrated with ex vivo samples, and differentiate blood from blood clot, all on a silicon substrate making it suitable for integration onto a vascular stent. This work shows that microfabricated sensors can provide clinically relevant information in settings closer to physiological conditions than previous work with cultured cells.
Collapse
Affiliation(s)
- Daniel Hoare
- Institute of Cardiovascular and Medical Sciences/British Heart FoundationUniversity of GlasgowGlasgowUK
| | - Andreas Tsiamis
- School of EngineeringInstitute for Integrated Micro and Nano SystemsUniversity of EdinburghEdinburghUK
| | - Jamie R. K. Marland
- School of EngineeringInstitute for Integrated Micro and Nano SystemsUniversity of EdinburghEdinburghUK
| | - Jakub Czyzewski
- BioElectronics UnitCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Mahmut T. Kirimi
- Centre for Medical and Industrial UltrasonicsJames Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | - Michael Holsgrove
- BioElectronics UnitCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ewan Russell
- Centre for Medical and Industrial UltrasonicsJames Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | - Steven L. Neale
- Centre for Medical and Industrial UltrasonicsJames Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | - Nosrat Mirzai
- BioElectronics UnitCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Srinjoy Mitra
- School of EngineeringInstitute for Integrated Micro and Nano SystemsUniversity of EdinburghEdinburghUK
| | - John R. Mercer
- Institute of Cardiovascular and Medical Sciences/British Heart FoundationUniversity of GlasgowGlasgowUK
| |
Collapse
|
6
|
Abstract
AbstractSi3N4 ceramics show excellent characteristics of mechanical and chemical resistance in combination with good biocompatibility, antibacterial property and radiolucency. Therefore, they are intensively studied as structural materials in skeletal implant applications. Despite their attractive properties, there are limited data in the field about in vitro studies of cellular growth on ceramic implant materials. In this study, the growth of bone cells was investigated on porous silicon nitride (Si3N4) ceramic implant by using electrochemical impedance spectroscopy (EIS). Partial sintering was performed at 1700 °C with limited amount of sintering additive for the production of porous Si3N4 scaffolds. All samples were then sterilized by using ethylene oxide followed by culturing MG-63 osteosarcoma cells on the substrates for in vitro assays. At 20 and 36 h, EIS was performed and results demonstrated that magnitude of the impedance as a result of the changes in the culture medium increased after incubation with osteosarcoma cells. The changes are attributed to the cellular uptake of charged molecules from the medium. Si3N4 samples appear to show large impedance magnitude changes, especially between 100 and 1 Hz. Impedance changes were also correlated with WST-1 measurements (36 h) and DAPI results.
Collapse
|
7
|
Hoare D, Bussooa A, Neale S, Mirzai N, Mercer J. The Future of Cardiovascular Stents: Bioresorbable and Integrated Biosensor Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900856. [PMID: 31637160 PMCID: PMC6794628 DOI: 10.1002/advs.201900856] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/26/2019] [Indexed: 05/15/2023]
Abstract
Cardiovascular disease is the greatest cause of death worldwide. Atherosclerosis is the underlying pathology responsible for two thirds of these deaths. It is the age-dependent process of "furring of the arteries." In many scenarios the disease is caused by poor diet, high blood pressure, and genetic risk factors, and is exacerbated by obesity, diabetes, and sedentary lifestyle. Current pharmacological anti-atherosclerotic modalities still fail to control the disease and improvements in clinical interventions are urgently required. Blocked atherosclerotic arteries are routinely treated in hospitals with an expandable metal stent. However, stented vessels are often silently re-blocked by developing "in-stent restenosis," a wound response, in which the vessel's lumen renarrows by excess proliferation of vascular smooth muscle cells, termed hyperplasia. Herein, the current stent technology and the future of biosensing devices to overcome in-stent restenosis are reviewed. Second, with advances in nanofabrication, new sensing methods and how researchers are investigating ways to integrate biosensors within stents are highlighted. The future of implantable medical devices in the context of the emerging "Internet of Things" and how this will significantly influence future biosensor technology for future generations are also discussed.
Collapse
Affiliation(s)
- Daniel Hoare
- BHF Cardiovascular Research CentreUniversity of GlasgowG12 8TAGlasgowScotland
| | - Anubhav Bussooa
- BHF Cardiovascular Research CentreUniversity of GlasgowG12 8TAGlasgowScotland
| | - Steven Neale
- James Watt South BuildingSchool of EngineeringUniversity of GlasgowG12 8QQGlasgowScotland
| | - Nosrat Mirzai
- Bioelectronics UnitCollege of Medical, Veterinary & Life Sciences (MVLS)University of GlasgowG12 8QQGlasgowScotland
| | - John Mercer
- BHF Cardiovascular Research CentreUniversity of GlasgowG12 8TAGlasgowScotland
| |
Collapse
|
8
|
McKittrick CM, Cardona MJ, Black RA, McCormick C. Development of a Bioactive Polymeric Drug Eluting Coronary Stent Coating Using Electrospraying. Ann Biomed Eng 2019; 48:271-281. [PMID: 31441008 PMCID: PMC6928095 DOI: 10.1007/s10439-019-02346-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/13/2019] [Indexed: 02/05/2023]
Abstract
Drug-eluting stents are now routinely used in the treatment of acute coronary syndromes caused by coronary artery disease. Whilst the sustained release of anti-proliferative drugs from these devices has greatly reduced the need for repeat revascularisation procedures, this approach is not suitable for all patients and appears to delay regrowth of the endothelium, necessitating the use of prolonged dual anti-platelet therapy. Although the development of more advanced stent platforms and drug coatings has produced modest improvements in performance, these devices have not fully addressed the limitations experienced with their first-generation counterparts. In the present study, we developed a novel stent coating that provides controlled sirolimus release from a bioactive polymer (accelerate™ AT) that has previously been shown to support endothelial cell growth in vitro. A bespoke electrospray deposition process provided control over the coating thickness, surface roughness, drug load, and release kinetics. The resultant optimised coating combines rapid release of an anti-proliferative agent from a bioactive polymer coating that promotes re-endothelialisation, thereby offering potential protection against in-stent restenosis and thrombosis. This novel, dual-action coating therefore has significant therapeutic potential, with the enhanced control of drug load and release kinetics offered by electrospray deposition also opening up opportunities for more personalised treatment approaches. Further development and evaluation of these technologies in vitro and in vivo is therefore warranted.
Collapse
Affiliation(s)
- C M McKittrick
- Department of Biomedical Engineering, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, G1 1QE, UK.
| | - M J Cardona
- Department of Biomedical Engineering, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, G1 1QE, UK
| | - R A Black
- Department of Biomedical Engineering, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, G1 1QE, UK
| | - C McCormick
- Department of Biomedical Engineering, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, G1 1QE, UK
| |
Collapse
|