1
|
Del Casale A, Simmaco M, Modesti MN, Zocchi C, Arena JF, Bilotta I, Alcibiade A, Sarli G, Cutillo L, Antonelli G, La Spina E, De Luca O, Preissner R, Borro M, Gentile G, Girardi P, Pompili M. DRD2, DRD3, and HTR2A Single-Nucleotide Polymorphisms Involvement in High Treatment Resistance to Atypical Antipsychotic Drugs. Biomedicines 2023; 11:2088. [PMID: 37509727 PMCID: PMC10377184 DOI: 10.3390/biomedicines11072088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The objective of this study was to investigate the DRD2 rs1800497, rs1799732, rs1801028, DRD3 rs6280, and HTR2A rs6314, rs7997012, and rs6311 single-nucleotide polymorphism (SNP) correlations with resistance to second-generation antipsychotics (SGAs) in a real-world sample of patients with treatment-resistant mental disorders. METHODS We divided 129 participants into a high treatment resistance (HTR) group (current treatment with two SGAs, or clozapine, or classic neuroleptics for a failure of previous SGAs trials) and a low treatment resistance (LTR) group (current treatment with one atypical antipsychotic). We used Next-Generation Sequencing on DNA isolated from peripheral blood samples to analyze the polymorphisms. We performed logistic regression to search for predictors of HTR membership. RESULTS A diagnosis of schizophrenia significantly predicted the HTR membership compared to other diagnoses. Other predictors were the DRD3 rs6280 C|T (OR = 22.195) and T|T (OR = 18.47) vs. C|C, HTR2A rs7997012 A|G vs. A|A (OR = 6.859) and vs. G|G (OR = 2.879), and DRD2 rs1799732 I|I vs. D|I (OR = 12.079) genotypes. CONCLUSIONS A diagnosis of schizophrenia and the DRD2 rs1799732, DRD3 rs6280, and HTR2A rs7997012 genotypes can predict high treatment resistance to SGAs.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Martina Nicole Modesti
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Clarissa Zocchi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Jan Francesco Arena
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bilotta
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Alcibiade
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Sarli
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Lorenzo Cutillo
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Antonelli
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Enrico La Spina
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Ottavia De Luca
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité—University Medicine Berlin, 10115 Berlin, Germany
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Paolo Girardi
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maurizio Pompili
- Unit of Psychiatry, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Abstract
BACKGROUND Studies that examine course and outcome in psychosis have reported considerable heterogeneity in terms of recovery, remission, employment, symptom presentation, social outcomes, and antipsychotic medication effects. Even with demonstrated heterogeneity in course and outcome, prophylactic antipsychotic maintenance therapy remains the prominent practice, particularly in participants with schizophrenia. Lack of efficacy in maintenance antipsychotic treatment and concerns over health detriments gives cause to re-examine guidelines. METHODS This study was conducted as part of the Chicago follow-up study designed as a naturalistic prospective longitudinal research study to investigate the course, outcome, symptomatology, and effects of antipsychotic medication on recovery and rehospitalization in participants with serious mental illness disorders. A total of 139 participants with 734 observations were included in the analysis. GEE logistic models were applied to adjust for confounding factors measured at index hospitalization and follow-ups. RESULTS Our data show that the majority of participants with schizophrenia or affective psychosis experience future episodes of psychosis at some point during the 20-year follow-up. There was a significant diagnostic difference between groups showing an increase in the number of future episodes of psychosis in participants with schizophrenia. Participants with schizophrenia not on antipsychotics after the first 2 years have better outcomes than participants prescribed antipsychotics. The adjusted odds ratio of not on antipsychotic medication was 5.989 (95% CI 3.588-9.993) for recovery and 0.134 (95% CI 0.070-0.259) for rehospitalization. That is, regardless of diagnosis, after the second year, the absence of antipsychotics predicted a higher probability of recovery and lower probability of rehospitalization at subsequent follow-ups after adjusting for confounders. CONCLUSION This study reports multiple findings that bring into question the use of continuous antipsychotic medications, regardless of diagnosis. Even when the confound by indication for prescribing antipsychotic medication is controlled for, participants with schizophrenia and affective psychosis do better than their medicated cohorts, strongly confirming the importance of exposing the role of aiDSP and antipsychotic drug resistance.
Collapse
Affiliation(s)
- Martin Harrow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas H Jobe
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Liping Tong
- Advocoate Aurora Health, Downers Grove, IL, USA
| |
Collapse
|
4
|
Kogure M, Kanahara N, Miyazawa A, Oishi K, Nakata Y, Oda Y, Iyo M. Interacting Roles of COMT and GAD1 Genes in Patients with Treatment-Resistant Schizophrenia: a Genetic Association Study of Schizophrenia Patients and Healthy Controls. J Mol Neurosci 2021; 71:2575-2582. [PMID: 34125398 DOI: 10.1007/s12031-021-01866-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The projection from dopaminergic neurons to gamma-aminobutyric acid (GABA) interneurons in the prefrontal cortex is involved in the etiology of schizophrenia. The impact of interacting effects between dopamine signals and the expression of GABA on the clinical phenotypes of schizophrenia has not been studied. Since these interactions could be closely involved in prefrontal cortex functions, patients with specific alleles of these relevant molecules (which lead to lower or vulnerable genetic functions) may develop treatment-refractory symptoms. We conducted a genetic association study focusing on COMT and GAD1 genes for a treatment-resistant schizophrenia (TRS) group (n=171), a non-TRS group (n=592), and healthy controls (HC: n=447), and we examined allelic combinations specific to TRS. The results revealed that the percentage of subjects with Met allele of rs4680 on the COMT gene and C/C homozygote of rs3470934 on the GAD1 gene was significantly higher in the TRS group than the other two groups. There was no significant difference between the non-TRS group and HC groups. Considering the direction of functions of these single-nucleotide polymorphisms revealed by previous studies, we speculate that subjects with the Met/CC allelic combination could have a higher dopamine level and a lower expression of GABA in the prefrontal cortex. Our results suggest that an interaction between the dopaminergic signal and GABA signal intensities could differ between TRS patients and patients with other types of schizophrenia and healthy subjects.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan.
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Chiba, Japan
| | - Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Cyclic Innovation, Japan Agency for Medical Research Development, Tokyo, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
5
|
Oishi K, Niitsu T, Kanahara N, Hashimoto T, Komatsu H, Sasaki T, Takase M, Sato Y, Iyo M. Genetic combination risk for schizophrenia. Schizophr Res 2020; 215:473-474. [PMID: 31477374 DOI: 10.1016/j.schres.2019.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan.
| | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Tasuku Hashimoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Hideki Komatsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Tsuyoshi Sasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan; Department of Child Psychiatry, Chiba University Hospital, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Masayuki Takase
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan; Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan; Department of Child Psychiatry, Chiba University Hospital, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| |
Collapse
|