1
|
Maksimova VP, Usalka OG, Makus YV, Popova VG, Trapeznikova ES, Khayrieva GI, Sagitova GR, Zhidkova EM, Prus AY, Yakubovskaya MG, Kirsanov KI. Aberrations of DNA methylation in cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-24-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation is a chromatin modification that plays an important role in the epigenetic regulation of gene expression. Changes in DNA methylation patterns are characteristic of many malignant neoplasms. DNA methylation is occurred by DNA methyltransferases (DNMTs), while demethylation is mediated by TET family proteins. Mutations and changes in the expression profile of these enzymes lead to DNA hypo- and hypermethylation and have a strong impact on carcinogenesis. In this review, we considered the key aspects of the mechanisms of regulation of DNA methylation and demethylation, and also analyzed the role of DNA methyltransferases and TET family proteins in the pathogenesis of various malignant neoplasms.During the preparation of the review, we used the following biomedical literature information bases: Scopus (504), PubMed (553), Web of Science (1568), eLibrary (190). To obtain full-text documents, the electronic resources of PubMed Central (PMC), Science Direct, Research Gate, CyberLeninka were used. To analyze the mutational profile of epigenetic regulatory enzymes, we used the cBioportal portal (https://www.cbioportal.org / ), data from The AACR Project GENIE Consortium (https://www.mycancergenome.org / ), COSMIC, Clinvar, and The Cancer Genome Atlas (TCGA).
Collapse
Affiliation(s)
- V. P. Maksimova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - O. G. Usalka
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - Yu. V. Makus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - V. G. Popova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Mendeleev University of Chemical Technology of Russia
| | - E. S. Trapeznikova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. I. Khayrieva
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. R. Sagitova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. M. Zhidkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. Yu. Prus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; MIREA – Russian Technological University
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| |
Collapse
|
2
|
The miR-23a/27a/24-2 cluster promotes postoperative progression of early-stage non-small cell lung cancer. Mol Ther Oncolytics 2022; 24:205-217. [PMID: 35071744 PMCID: PMC8760463 DOI: 10.1016/j.omto.2021.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Even with optimal surgery, many early-stage non-small cell lung cancer (NSCLC) patients die of recurrence. Unfortunately, there are no precise predictors for postoperative recurrence in early-stage NSCLC, and the recurrence mechanism is still unclear. In this study, we found that simultaneous overexpression of all miRNAs in the miR-23a/27a/24-2 cluster was closely associated with postoperative recurrence, β-catenin upregulation and promoter methylation of p16 and CDH13 in early-stage NSCLC patients. In addition, in vitro and in vivo experiments show that overexpression or inhibition of all miRNAs in the miR-23a/27a/24-2 cluster significantly stimulated or inhibited NSCLC cell stemness, tumorigenicity and metastasis. Furthermore, we demonstrated that the miR-23a/27a/24-2 cluster miRNAs activated Wnt/β-catenin signaling by targeting their suppressors and stimulated promoter methylation-induced silencing of p16 and CDH13 by affecting DNA methylation-related genes expression. Our findings suggest that simultaneous high expression of all miRNAs in the miR-23a/27a/24-2 cluster represents a new biomarker for predicting postoperative recurrence in early-stage NSCLC. The miR-23a/27a/24-2 cluster miRNAs stimulate early-stage NSCLC progression through simultaneously stimulating Wnt/β-catenin signaling, and promoter methylation-induced tumor suppressor genes silencing. In addition, simultaneous inhibition of all miRNAs in the miR-23a/27a/24-2 cluster may be a useful strategy for treatment of early-stage NSCLC recurrence.
Collapse
|
3
|
Shekhawat J, Gauba K, Gupta S, Choudhury B, Purohit P, Sharma P, Banerjee M. Ten-eleven translocase: key regulator of the methylation landscape in cancer. J Cancer Res Clin Oncol 2021; 147:1869-1879. [PMID: 33913031 DOI: 10.1007/s00432-021-03641-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Methylation of 5th residue of cytosine in CpG island forms 5-methylcytosine which is stable, heritable epigenetic mark. Methylation levels are broadly governed by methyltransferases and demethylases. An aberration in the demethylation process contributes to the silencing of gene expression. Ten eleven translocation (TET) dioxygenase (1-3) the de novo demethylase is responsible for conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosisne (5-fC) and 5-carboxycytosine (5-caC) during demethylation process. Mutations and abnormal expression of TET proteins contribute to carcinogenesis. Discovery of TET proteins has offered various pathways for the reversal of methylation levels thus, enhancing our knowledge as to how methylation effects cancer progression. METHODS We searched "PubMed" and "Google scholar" databases and selected studies with the following keywords "TET enzyme", "cancer", "5-hmC", and "DNA demethylation". In this review, we have discussed combinatorial use of vitamin C in inhibiting tumour growth by enhancing the catalytic activity of TET enzymes and consequently, increasing the 5-hmC levels. 5-Hydroxymethylcytosine holds promise as a prognostic biomarker in solid cancers. The contribution of induction and suppression of TET enzymes and 5-hmC carcinogenesis are discussed in haematological and solid cancers. RESULTS We found that TET enzymes play central role in maintaining the methylation balance. Any anomaly in their expression may dip the balance towards cancer progression. Low levels of TET enzymes and 5-hmC correlate with tumour invasion, progression and metastasis. Also, use of vitamin C enhances TET activity. CONCLUSION TET enzymes play vital role in shaping the methylation landscape in body. 5-hmC can be used as prognostic marker in solid cancers.
Collapse
Affiliation(s)
- Jyoti Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Kavya Gauba
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Shruti Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Bikram Choudhury
- Department of E.N.T.-Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
4
|
Sun SN, Hu S, Shang YP, Li LY, Zhou H, Chen JS, Yang JF, Li J, Huang Q, Shen CP, Xu T. Relevance function of microRNA-708 in the pathogenesis of cancer. Cell Signal 2019; 63:109390. [PMID: 31419576 DOI: 10.1016/j.cellsig.2019.109390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally responsible for regulating >70% of human genes. MicroRNA-708 (miR-708) is encoded in the intron 1 of the Odd Oz/ten-m homolog 4 (ODZ4) gene. Numerous researches have confirmed that the abnormal expressed miR-708 is involved in the regulation of multiple types of cancer. Notably, the expression level of miR-708 was higher in lung cancer, bladder cancer (BC) and colorectal cancer (CRC) cell lines while lower in hepatocellular carcinoma (HCC), prostate cancer (PC), gastric cancer (GC) and so on. This review provides a current view on the association between miR-708 and several cancers and focuses on the recent studies of miR-708 regulation, discussing its potential as an epigenetic biomarker and therapeutic target for these cancers. In particular, the regulated mechanisms and clinical application of miR-708 in these cancers are also discussed.
Collapse
Affiliation(s)
- Si-Nan Sun
- The First Affiliation Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shuang Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | | | - Liang-Yun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Hong Zhou
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jia-Si Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jun-Fa Yang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Qiang Huang
- The First Affiliation Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Chuan-Pu Shen
- Teaching and Research Department of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, China.
| | - Tao Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|