1
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL. The Relationship between Sclerostin and Kidney Transplantation Mineral Bone Disorders: A Molecule of Controversies. Calcif Tissue Int 2024; 115:339-361. [PMID: 39078512 PMCID: PMC11405501 DOI: 10.1007/s00223-024-01261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/06/2024] [Indexed: 07/31/2024]
Abstract
Kidney transplantation is the most effective treatment option for most patients with end-stage kidney disease due to reduced mortality, decreased cardiovascular events and increased quality of life compared to patients treated with dialysis. However, kidney transplantation is not devoid of both acute and chronic complications including mineral bone disorders (MBD) which are already present in patients with chronic kidney disease (CKD) before kidney transplantation. The natural history of MBD after kidney transplantation is variable and new markers are needed to define MBD after kidney transplantation. One of these promising molecules is sclerostin. The main action of sclerostin is to inhibit bone formation and mineralization by blocking osteoblast differentiation and function. In kidney transplant recipients (KTRs), various studies have shown that sclerostin is associated with graft function, bone parameters, vascular calcification, and arterial stiffness although non-uniformly. Furthermore, data for inhibition of sclerostin with monoclonal antibody romosozumab for treatment of osteoporosis is available for general population but not in KTRs which osteoporosis is highly prevalent. In this narrative review, we have summarized the studies investigating the change of sclerostin before and after kidney transplantation, the relationship between sclerostin and laboratory parameters, bone metabolism and vascular calcification in the context of kidney transplantation. We also pointed out the uncertainties, explained the causes of divergent findings and suggest further potential study topics regarding sclerostin in kidney transplantation.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Department of Nephrology, Saint Loui University, Saint Louis University Hospital, Saint Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
- Department of Nephrology, Saint Loui University, Saint Louis University Hospital, Saint Louis, MO, USA
| | - Yasar Caliskan
- Department of Nephrology, Saint Loui University, Saint Louis University Hospital, Saint Louis, MO, USA
| | - Krista L Lentine
- Department of Nephrology, Saint Loui University, Saint Louis University Hospital, Saint Louis, MO, USA
| |
Collapse
|
2
|
Wu X, Liu J, Tian D, Chen J, Li H. Associations of serum Dickkopf-1 levels with disease severity and 90-day Prognosis after spontaneous intracerebral hemorrhage: results from the prospective cohort study. Neurosurg Rev 2024; 47:528. [PMID: 39227406 DOI: 10.1007/s10143-024-02755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Dickkopf-1 (DKK-1) may be involved in inflammatory response and secondary brain injury after acute brain injury. We gauged serum DKK-1 levels and further assessed its correlation with disease severity and investigated its predictive value for 90-day prognosis in patients with spontaneous intracerebral hemorrhage (sICH). Serum DKK-1 levels were measured in 128 sICH patients and 128 healthy controls. The severity of sICH was assessed using the Glasgow Coma Scale (GCS) scores and hematoma volumes. Poor prognosis was referred to as a Glasgow Outcome Scale (GOS) score of 1-3 at 90 days after stroke. Multivariate analysis was performed to identify associations of serum DKK-1 levels with disease severity, early neurological deterioration (END) and poor prognosis. Receiver operating characteristic curve (ROC) was built to investigate the prognostic predictive capability. The serum DKK-1 levels of patients were significantly higher than those of controls (median, 4.74 ng/mL versus 1.98 ng/mL; P < 0.001), and were independently correlated with hematoma volumes (ρ = 0.567, P < 0.001; t = 3.444, P = 0.001) and GCS score (ρ = -0.612, P < 0.001; t = -2.048, P = 0.043). Serum DKK-1 significantly differentiated patients at risk of END (area under ROC curve (AUC), 0.850; 95% confidence interval (CI), 0.777-0.907; P < 0.001) and poor prognosis (AUC, 0.830; 95% CI, 0.753-0.890; P < 0.001), which had similar prognostic ability, as compared to GCS scores and hematoma volumes. Subsequent Logistic regression model affirmed that GCS score, hematoma volume, and serum DKK-1 levels were independently associated with END and poor prognosis at 90 days after sICH. The models, which contained them, performed well using ROC curve analysis and calibration curve analysis. Serum DKK-1 levels are markedly associated with disease severity, END and 90-day poor prognosis in sICH. Hence, serum DKK-1 is presumed to be used as a potential prognostic biomarker of sICH.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Jin Liu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Da Tian
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Junxia Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Huguang Li
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China.
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China.
| |
Collapse
|
3
|
Pang L, Lin H, Wei X, Wei W, Lan Y. Prognostic effect of osteoprotegerin in patients with ischemic stroke: A systematic review and meta-analysis. PLoS One 2024; 19:e0303832. [PMID: 38820283 PMCID: PMC11142426 DOI: 10.1371/journal.pone.0303832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Osteoprotegerin (OPG) is supposed to participate in the development of atherosclerosis and cardio-cerebrovascular disease. However, the results of research on relationship between OPG and ischemic stroke (IS) are controversial. Therefore, we carried out the first systematic review and meta-analysis to evaluate prognostic effect of osteoprotegerin in patients with IS. METHODS We comprehensively searched databases of PubMed, Embase, and the Cochrane Library through 21 August 2023 to identify observational studies that evaluated effect of OPG on poor functional outcome (modified Rankin Scale [mRS] Score of 3-6) and mortality in patients with IS. Adjusted odds ratios (aOR) with a 95% confidence interval (CI) of each included study were used as much as possible to assess the pooled effect. RESULTS Five studies that enrolled 4,506 patients in total fulfilled our inclusion criteria. Three studies were included in the pooled analysis for each endpoint since one of the included studies had provided data on poor functional outcome as well as mortality. OPG was neither associated with poor functional outcome (aOR 1.29, 95% CI 0.90-1.85) nor with mortality (aOR 1.57, 95% CI 0.90-2.74) in patients with IS. CONCLUSIONS There is insufficient evidence to demonstrate the correlation between OPG and mortality or poor functional outcome in IS patients. OPG cannot be applied to predict worse neurological function in IS patients based on the current evidence.
Collapse
Affiliation(s)
- Linlin Pang
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hongyu Lin
- Department of Neurology, Red Cross Hospital of Yulin City, Yulin, Guangxi Zhuang Autonomous Region, China
| | - Xinxian Wei
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wenxin Wei
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yu Lan
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
4
|
Mathold K, Nobin R, Brudin L, Carlsson M, Wanby P. Albumin-to-alkaline phosphatase ratio may be a better predictor of survival than sclerostin, dickkopf-1, osteopontin, osteoprotegerin and osteocalcin. Heliyon 2024; 10:e29639. [PMID: 38644839 PMCID: PMC11031828 DOI: 10.1016/j.heliyon.2024.e29639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
Objectives The value of biochemical markers of bone turnover (BTMs) in predicting survival and disease remains unclear. In a prospective study we evaluated the novel biomarkers for bone turnover sclerostin, dickkopf-1 (DKK-1), osteopontin (OPN), osteoprotegerin (OPG) and osteocalcin (OC), as well as a traditional biomarker, alkaline phosphatase (ALP) in relation to risk of mortality, cardiovascular events and fractures. Participants and Methods:Routine blood tests and serum BTMs, including ALP, were analyzed in patients with hip fracture n = 97, stroke n = 71 and healthy volunteers n = 83 (mean age 86, 83 and 77, respectively), followed for 7 years. Hazard Ratios (HR) were calculated for mortality, cardiovascular events and fractures in relation to these biomarkers. After adding the albumin-to-ALP ratio (AAPR) a post hoc analysis was performed. Results 120 participants died during the study. In the entire group of patients and volunteers (n = 251) higher AAPR (HR 0.28, 95 % CI 0.14-0.59, p < 0.001) was associated with decreased mortality. OPN and OPG were associated with mortality risk only in the univariate statistical analysis. HR for high AAPR in relation to new cardiovascular events was borderline significant (HR 0.29, 95 % CI 0.08-1.06, p = 0.061). None of the examined biomarkers were associated with new fractures, nor with an increased risk of a new cardiovascular event. Conclusions AAPR may be a better predictor of mortality than the more novel BTMs, and higher AAPR could be associated with longer life expectancy. Further studies should determine the clinical usefulness of AAPR as a biomarker of mortality and cardiovascular disease.
Collapse
Affiliation(s)
- K. Mathold
- Department of Primary Care, Kalmar, Sweden
| | - R. Nobin
- Department of Orthopedics, Kalmar, Sweden
| | - L. Brudin
- Department of Clinical Physiology, Kalmar and Department of Medical and Health Sciences, University of Linköping, Sweden
| | - M. Carlsson
- Department of Clinical Chemistry, Kalmar and Department of Medicine and Optometry, Linnaeus University, Sweden
| | - P. Wanby
- Department of Internal Medicine, Section of Endocrinology, Kalmar, Department of Medical and Health Sciences, University of Linköping and Department of Medicine and Optometry, Linnaeus University, Sweden
| |
Collapse
|
5
|
Sanabria-de la Torre R, González-Salvatierra S, García-Fontana C, Andújar-Vera F, García-Fontana B, Muñoz-Torres M, Riquelme-Gallego B. Exploring the Role of Sclerostin as a Biomarker of Cardiovascular Disease and Mortality: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15981. [PMID: 36498053 PMCID: PMC9739125 DOI: 10.3390/ijerph192315981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Sclerostin is most recognized for its role in controlling bone formation; however, it is also expressed in the heart, aorta, coronary, and peripheral arteries. Human studies have associated high circulating sclerostin levels with the presence of different cardiovascular diseases (CVD), surrogate CVD markers, and a high risk of cardiovascular events in some populations. However, this is still a matter of scientific debate, as the results have been very heterogeneous among studies. In the present review, the association between serum sclerostin levels and CVD and/or cardiovascular mortality was analyzed. For this purpose, a scoping review was performed in which articles measuring serum sclerostin levels and cardiovascular risk in patients were selected. Eleven articles answered the research question; of these articles, 8/11 evaluated the association between sclerostin and CVD, of which 4/8 found a positive association, 2/8 found a negative association, and 2/8 found no association between variables. Five (5/11) of the articles included in the study evaluated cardiovascular mortality, of which 3/5 found a positive association, 1/5 found a negative association, and 1/5 found no association between variables. In conclusion, we did not find sufficient results to be able to demonstrate an association between elevated sclerostin levels and the development of CVD and/or cardiovascular mortality in the general population due to heterogeneity in the results. However, there seems to be a tendency to consider increased sclerostin levels as a risk factor for both the development of cardiovascular events and cardiovascular mortality in specific populations. Further studies in this field will help to solve some of the inconsistencies found during this scoping review and allow for the future use of sclerostin measurement as a strategy in the prevention and diagnosis of CVD and/or cardiovascular mortality.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Sheila González-Salvatierra
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Francisco Andújar-Vera
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Blanca Riquelme-Gallego
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
| |
Collapse
|
6
|
Del Real A, Perez-Campo FM, Perez-Nuñez MI, Sañudo C, Santurtun A, Garcia-Ibarbia C, Garcia-Unzueta MT, Fraga MF, Fernandez AF, Valero MC, Laguna E, Riancho JA. Methylation of the Sclerostin (SOST) Gene in Serum Free DNA: A New Bone Biomarker? Genet Test Mol Biomarkers 2021; 25:42-47. [PMID: 33372860 DOI: 10.1089/gtmb.2020.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cell-free DNA (cfDNA) methylation is an important molecular biomarker, which provides information about the regulation of gene expression in the tissue of origin. There is an inverse correlation between SOST gene methylation and expression levels. Methods: We analyzed SOST promoter methylation in cfDNA from serum, and compared it with DNA from blood and bone cells from patients undergoing hip replacement surgery. We also measured cfDNA methylation in 28 osteoporotic patients at baseline and after 6 months of antiosteoporotic therapy (alendronate, teriparatide, or denosumab). Results: SOST gene promoter methylation levels in serum cfDNA were very similar to those of bone-derived DNA (79% ± 12% and 82% ± 7%, respectively), but lower than methylation levels in blood cell DNA (87% ± 10%). Furthermore, there was a positive correlation between an individual's SOST DNA methylation values in serum and bone. No differences in either serum sclerostin levels or SOST methylation were found after 6-months of therapy with antiosteoporotic drugs. Conclusions: Our results suggest that serum cfDNA does not originate from blood cells, but rather from bone. However, since we did not confirm changes in this marker after therapy with bone-active drugs, further studies examining the correlation between bone changes of SOST expression and SOST methylation in cfDNA are needed to confirm its potential role as a bone biomarker.
Collapse
Affiliation(s)
- Alvaro Del Real
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Flor M Perez-Campo
- Department of Molecular Biology, University of Cantabria-IDIVAL, Santander, Spain
| | | | - Carolina Sañudo
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Ana Santurtun
- Unit of Legal Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Carmen Garcia-Ibarbia
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - M Teresa Garcia-Unzueta
- Service of Clinical Biochemistry, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Asturias, Spain
| | - Agustin F Fernandez
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA. Fundación para la Investigación Biosanitaria de Asturias (FINBA), Asturias, Spain
| | - Maria Carmen Valero
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Esther Laguna
- Department of Molecular Biology, University of Cantabria-IDIVAL, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital Universitario Marqués de Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| |
Collapse
|
7
|
Zhou Y, Yao Y, Sheng L, Zhang J, Zhang JH, Shao A. Osteopontin as a candidate of therapeutic application for the acute brain injury. J Cell Mol Med 2020; 24:8918-8929. [PMID: 32657030 PMCID: PMC7417697 DOI: 10.1111/jcmm.15641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
Acute brain injury is the leading cause of human death and disability worldwide, which includes intracerebral haemorrhage, subarachnoid haemorrhage, cerebral ischaemia, traumatic brain injury and hypoxia‐ischaemia brain injury. Currently, clinical treatments for neurological dysfunction of acute brain injury have not been satisfactory. Osteopontin (OPN) is a complex adhesion protein and cytokine that interacts with multiple receptors including integrins and CD44 variants, exhibiting mostly neuroprotective roles and showing therapeutic potential for acute brain injury. OPN‐induced tissue remodelling and functional repair mainly rely on its positive roles in the coordination of pro‐inflammatory and anti‐inflammatory responses, blood‐brain barrier maintenance and anti‐apoptotic actions, as well as other mechanisms such as affecting the chemotaxis and proliferation of nerve cells. The blood OPN strongly parallel with the OPN induced in the brain and can be used as a novel biomarker of the susceptibility, severity and outcome of acute brain injury. In the present review, we summarized the molecular signalling mechanisms of OPN as well as its overall role in different kinds of acute brain injury.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lesang Sheng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Crosstalk of Brain and Bone-Clinical Observations and Their Molecular Bases. Int J Mol Sci 2020; 21:ijms21144946. [PMID: 32668736 PMCID: PMC7404044 DOI: 10.3390/ijms21144946] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
As brain and bone disorders represent major health issues worldwide, substantial clinical investigations demonstrated a bidirectional crosstalk on several levels, mechanistically linking both apparently unrelated organs. While multiple stress, mood and neurodegenerative brain disorders are associated with osteoporosis, rare genetic skeletal diseases display impaired brain development and function. Along with brain and bone pathologies, particularly trauma events highlight the strong interaction of both organs. This review summarizes clinical and experimental observations reported for the crosstalk of brain and bone, followed by a detailed overview of their molecular bases. While brain-derived molecules affecting bone include central regulators, transmitters of the sympathetic, parasympathetic and sensory nervous system, bone-derived mediators altering brain function are released from bone cells and the bone marrow. Although the main pathways of the brain-bone crosstalk remain ‘efferent’, signaling from brain to bone, this review emphasizes the emergence of bone as a crucial ‘afferent’ regulator of cerebral development, function and pathophysiology. Therefore, unraveling the physiological and pathological bases of brain-bone interactions revealed promising pharmacologic targets and novel treatment strategies promoting concurrent brain and bone recovery.
Collapse
|
9
|
Bovijn J, Krebs K, Chen CY, Boxall R, Censin JC, Ferreira T, Pulit SL, Glastonbury CA, Laber S, Millwood IY, Lin K, Li L, Chen Z, Milani L, Smith GD, Walters RG, Mägi R, Neale BM, Lindgren CM, Holmes MV. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci Transl Med 2020; 12:eaay6570. [PMID: 32581134 PMCID: PMC7116615 DOI: 10.1126/scitranslmed.aay6570] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/26/2019] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Inhibition of sclerostin is a therapeutic approach to lowering fracture risk in patients with osteoporosis. However, data from phase 3 randomized controlled trials (RCTs) of romosozumab, a first-in-class monoclonal antibody that inhibits sclerostin, suggest an imbalance of serious cardiovascular events, and regulatory agencies have issued marketing authorizations with warnings of cardiovascular disease. Here, we meta-analyze published and unpublished cardiovascular outcome trial data of romosozumab and investigate whether genetic variants that mimic therapeutic inhibition of sclerostin are associated with higher risk of cardiovascular disease. Meta-analysis of up to three RCTs indicated a probable higher risk of cardiovascular events with romosozumab. Scaled to the equivalent dose of romosozumab (210 milligrams per month; 0.09 grams per square centimeter of higher bone mineral density), the SOST genetic variants were associated with lower risk of fracture and osteoporosis (commensurate with the therapeutic effect of romosozumab) and with a higher risk of myocardial infarction and/or coronary revascularization and major adverse cardiovascular events. The same variants were also associated with increased risk of type 2 diabetes mellitus and higher systolic blood pressure and central adiposity. Together, our findings indicate that inhibition of sclerostin may elevate cardiovascular risk, warranting a rigorous evaluation of the cardiovascular safety of romosozumab and other sclerostin inhibitors.
Collapse
Affiliation(s)
- Jonas Bovijn
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kristi Krebs
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Chia-Yen Chen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruth Boxall
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Jenny C Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Ferreira
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Sara L Pulit
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Craig A Glastonbury
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Samantha Laber
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University Health Science Centre, Peking University, Beijing 100191, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cecilia M Lindgren
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Michael V Holmes
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|