1
|
Bardales KL, Jiang L, Radaelli E, Assenmacher CA, Lenz JA, Atherton MJ. Intertumoral heterogeneity of the immune microenvironment in high grade canine mast cell tumors. VETERINARY ONCOLOGY (LONDON, ENGLAND) 2025; 2:7. [PMID: 40093350 PMCID: PMC11906493 DOI: 10.1186/s44356-025-00020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Background Canine cutaneous mast cell tumors (MCTs) are a common, yet clinically challenging tumor type given their variable biological behavior. Although patients with low grade MCTs can often be effectively managed with surgery alone, most dogs with high grade MCTs succumb to their disease despite multimodal therapy. An improved understanding of the immune tumor microenvironment (TME) may help identify novel prognostic and therapeutic targets. Methods In this study, we interrogated the immune transcriptional profiles of the TME in low and high grade MCTs, and quantified intratumoral T cells. Twelve client-owned dogs with MCTs (6 Kiupel low grade with clinically benign behavior and 6 Kiupel high grade with clinically aggressive behavior) that underwent curative-intent surgery were selected. Tumor grade was confirmed by a single veterinary pathologist. RNA was extracted from all tumors followed by immune transcriptional profiling utilizing the NanoString Canine IO panel and analysis using the ROSALIND platform. T cell density was determined by immunohistochemical staining for CD3 and quantified using ImageScope software (Leica Biosystems) following digital slide capture. Lymphocytic infiltrate was further characterized in the TME of one high grade MCT using co-immunofluorescence. Results Immune transcriptional profiling identified 9 differentially expressed genes between low and high grade MCTs (p-adj < 0.05). Programmed cell death protein 1 (PDCD1) and inducible T-cell costimulator ligand (ICOSLG) gene expression were significantly higher in a subset of high grade MCTs. ICOSLG expression positively correlated with T cell score (rs = 0.6434, p = 0.0278). Although the T cell density was not significantly different between low (mean of 76.42 CD3 + /mm2, SD 12 CD3 + /mm2) and high grade MCTs (mean of 129.1 CD3 + /mm2, SD 96.06 CD3 + /mm2), greater variation of T cell densities was observed across high grade MCTs compared to low grade (p = 0.0059). Immunofluorescence of one high grade MCT with marked T cell infiltration revealed organized aggregates of T and B cells consistent with tertiary lymphoid structures (TLS). Conclusions Our data revealed significant differences in the immune TME of low and high grade MCTs and provides rationale to further investigate potential prognostic and therapeutic roles of immune checkpoints in canine MCTs. Supplementary Information The online version contains supplementary material available at 10.1186/s44356-025-00020-9.
Collapse
Affiliation(s)
- K. L. Bardales
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - L. Jiang
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - E. Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - C. A. Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - J. A. Lenz
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - M. J. Atherton
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
2
|
Jiang K, Ning N, Huang J, Chang Y, Wang R, Ma J. Psilostachyin C reduces malignant properties of hepatocellular carcinoma cells by blocking CREBBP-mediated transcription of GATAD2B. Funct Integr Genomics 2024; 24:75. [PMID: 38600341 DOI: 10.1007/s10142-024-01353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally. Many herbal medicines and their bioactive compounds have shown anti-tumor properties. This study was conducted to examine the effect of psilostachyin C (PSC), a sesquiterpenoid lactone isolated from Artemisia vulgaris L., in the malignant properties of HCC cells. CCK-8, flow cytometry, wound healing, and Transwell assays revealed that 25 μM PSC treatment significantly suppressed proliferation, cell cycle progression, migration, and invasion of two HCC cell lines (Hep 3B and Huh7) while promoting cell apoptosis. Bioinformatics prediction suggests CREB binding protein (CREBBP) as a promising target of PSC. CREBBP activated transcription of GATA zinc finger domain containing 2B (GATAD2B) by binding to its promoter. CREBBP and GATAD2B were highly expressed in clinical HCC tissues and the acquired HCC cell lines, but their expression was reduced by PSC. Either upregulation of CREBBP or GATAD2B restored the malignant properties of HCC cells blocked by PSC. Collectively, this evidence demonstrates that PSC pocessess anti-tumor functions in HCC cells by blocking CREBBP-mediated transcription of GATAD2B.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China
| | - Ning Ning
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China
| | - Jing Huang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China
| | - Yu Chang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P.R. China
| | - Rao Wang
- Department of TCM Orthopedic Center, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi East Road, Beilin District, Xi'an, Shaanxi, 710054, P.R. China.
| | - Jie Ma
- Department of Neurology, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi East Road, Beilin District, Xi'an, Shaanxi, 710054, P.R. China.
| |
Collapse
|
3
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
4
|
Seyfried TN, Mukherjee P, Lee DC, Ta L, Nations L. Case report: Resolution of malignant canine mast cell tumor using ketogenic metabolic therapy alone. Front Nutr 2023; 10:1157517. [PMID: 37057065 PMCID: PMC10086349 DOI: 10.3389/fnut.2023.1157517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundMast cell tumors (MCT) are common neoplasms in dogs and are similar to most other malignant cancers in requiring glucose for growth, regardless of histological grade. Ketogenic metabolic therapy (KMT) is emerging as a non-toxic nutritional intervention for cancer management in animals and humans alike. We report the case of a 7 years-old Pit Bull terrier that presented in 2011 with a cutaneous mast cell tumor under the right nostril.MethodsThe patient’s parent refused standard of care (SOC) and steroid medication after initial tumor diagnosis due to the unacceptable adverse effects of these treatments. Following tumor diagnosis, the patient’s diet was switched from Ol’Roy dog food to raw vegetables with cooked fish. The tumor continued to grow on this diet until July, 2013 when the diet was switched to a carbohydrate free, raw calorie restricted ketogenic diet consisting mostly of chicken and oils. A dog food calculator was used to reduce calories to 60% (40% calorie restriction) of that consumed on the original diet. A total of 444 kilocalories were given twice/day at 12 h intervals with one medium-sized raw radish given as a treat between each meal.ResultsThe tumor grew to about 3–4 cm and invaded surrounding tissues while the patient was on the raw vegetable, cooked fish diet. The tumor gradually disappeared over a period of several months when the patient was switched to the carbohydrate free calorie restricted ketogenic diet. The patient lost 2.5 kg during the course of the calorie restriction and maintained an attentive and active behavior. The patient passed away without pain on June 4, 2019 (age 15 years) from failure to thrive due to an enlarged heart with no evidence of mast cell tumor recurrence.ConclusionThis is the first report of a malignant cutaneous mast cell tumor in a dog treated with KMT alone. The resolution of the tumor in this canine patient could have been due to the diet-induced energy stress and the restriction of glucose-driven aerobic fermentation that is essential for the growth of most malignant tumors. Further studies are needed to determine if this non-toxic dietary therapeutic strategy could be effective in managing other canine patients with malignant mast cell tumors.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Department of Biology, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Purna Mukherjee
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Derek C. Lee
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Loren Nations
- Veterinary Healthcare Associates, Winter Haven, FL, United States
| |
Collapse
|
5
|
Bray J, Eward W, Breen M. Evaluating the relevance of surgical margins. Part one: The problems with current methodology. Vet Comp Oncol 2023; 21:1-11. [PMID: 36308442 DOI: 10.1111/vco.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
The goal of cancer surgery is to achieve a "clean" microscopic resection, with no residual tumour remaining in the wound. To achieve that goal, the surgeon typically incorporates a measured buffer of grossly normal tissue about the entire circumference of the tumour. Microscopic analysis of the resection boundaries is then performed to determine if all traces of the tumour have been completely removed. This analysis is thought to provide a surrogate indication as to the likelihood for that tumour to recur after surgery. However, it is recognised that tumour recurrence may not occur even when microscopic evidence of tumour has been identified at the resection margins, and recurrence can also occur when conventional histology has considered the tumour to have been completely removed. The explanations for this dichotomy are numerous and include technical and practical limitations of the processing methodology, and also several surgeon-related and tumour-related reasons. Ultimately, the inability to confidently determine when a tumour has been removed sufficiently to prevent recurrence can impact on the ability to provide owners with confident treatment advice. In this article, the authors describe the challenges with defining the true extent of the tumour margin from the perspective of the surgeon, the pathologist and the tumour. The authors also provide an analysis of why our current efforts to ensure that all traces of the local tumour have been successfully removed may provide an imperfect assessment of the risk of recurrence.
Collapse
Affiliation(s)
| | - Will Eward
- Duke Cancer Center, Durham, North Carolina, USA
| | - Matthew Breen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Wang N, Gu Y, Li L, Chi J, Liu X, Xiong Y, Zhong C. Development and Validation of a Prognostic Classifier Based on Lipid Metabolism-Related Genes for Breast Cancer. J Inflamm Res 2022; 15:3477-3499. [PMID: 35726216 PMCID: PMC9206459 DOI: 10.2147/jir.s357144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background The changes of lipid metabolism have been implicated in the development of many tumors, but its role in breast invasive carcinoma (BRCA) remains to be fully established. Here, we attempted to ascertain the prognostic value of lipid metabolism-related genes in BRCA. Methods We obtained RNA expression data and clinical information for BRCA and normal samples from public databases and downloaded a lipid metabolism-related gene set. Ingenuity Pathway Analysis (IPA) was applied to identify the potential pathways and functions of Differentially Expressed Genes (DEGs) related to lipid metabolism. Subsequently, univariate and multivariate Cox regression analyses were utilized to construct the prognostic gene signature. Functional enrichment analysis of prognostic genes was achieved by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Kaplan-Meier analysis, Receiver Operating Characteristic (ROC) curves, clinical follow-up results were employed to assess the prognostic potency. Potential compounds targeting prognostic genes were screened by Connectivity Map (CMap) database and a prognostic gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Furthermore, we separately validated the selected marker genes in BRCA samples and human breast cancer cell lines (MCF-7, MDA-MB-231). Results IPA and functional enrichment analysis demonstrated that the 162 lipid metabolism-related DEGs we obtained were involved in many lipid metabolism and BRCA pathological signatures. The prognostic classifier we constructed comprising SDC1 and SORBS1 can serve as an independent prognostic marker for BRCA. CMap filtered 37 potential compounds against prognostic genes, of which 16 compounds could target both two prognostic genes were identified by CTD. The functions of the two prognostic genes in breast cancer cells were verified by cell function experiments. Conclusion Within this study, we identified a novel prognostic classifier based on two lipid metabolism-related genes: SDC1 and SORBS1. This result highlighted a new perspective on the metabolic exploration of BRCA.
Collapse
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiangrui Chi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinwei Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chaochao Zhong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
7
|
Willmann M, Yuzbasiyan-Gurkan V, Marconato L, Dacasto M, Hadzijusufovic E, Hermine O, Sadovnik I, Gamperl S, Schneeweiss-Gleixner M, Gleixner KV, Böhm T, Peter B, Eisenwort G, Moriggl R, Li Z, Jawhar M, Sotlar K, Jensen-Jarolim E, Sexl V, Horny HP, Galli SJ, Arock M, Vail DM, Kiupel M, Valent P. Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus Proposal. Front Vet Sci 2021; 8:755258. [PMID: 34957277 PMCID: PMC8702826 DOI: 10.3389/fvets.2021.755258] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023] Open
Abstract
Mast cell neoplasms are one of the most frequently diagnosed malignancies in dogs. The clinical picture, course, and prognosis vary substantially among patients, depending on the anatomic site, grade and stage of the disease. The most frequently involved organ is the skin, followed by hematopoietic organs (lymph nodes, spleen, liver, and bone marrow) and mucosal sites of the oral cavity and the gastrointestinal tract. In cutaneous mast cell tumors, several grading and staging systems have been introduced. However, no comprehensive classification and no widely accepted diagnostic criteria have been proposed to date. To address these open issues and points we organized a Working Conference on canine mast cell neoplasms in Vienna in 2019. The outcomes of this meeting are summarized in this article. The proposed classification includes cutaneous mast cell tumors and their sub-variants defined by grading- and staging results, mucosal mast cell tumors, extracutaneous/extramucosal mast cell tumors without skin involvement, and mast cell leukemia (MCL). For each of these entities, diagnostic criteria are proposed. Moreover, we have refined grading and staging criteria for mast cell neoplasms in dogs based on consensus discussion. The criteria and classification proposed in this article should greatly facilitate diagnostic evaluation and prognostication in dogs with mast cell neoplasms and should thereby support management of these patients in daily practice and the conduct of clinical trials.
Collapse
Affiliation(s)
- Michael Willmann
- Department/Hospital for Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Michael Willmann
| | - Vilma Yuzbasiyan-Gurkan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Laura Marconato
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell'Emilia, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Emir Hadzijusufovic
- Department/Hospital for Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Olivier Hermine
- Department of Hematology, Imagine Institute Université de Paris, INSERM U1163, CEREMAST, Necker Hospital, Paris, France
| | - Irina Sadovnik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Susanne Gamperl
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Mathias Schneeweiss-Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karoline V. Gleixner
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thomas Böhm
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Peter
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gregor Eisenwort
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Zhixiong Li
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hanover Medical School, Hanover, Germany
| | - Mohamad Jawhar
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Erika Jensen-Jarolim
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Paracelsus Medical University of Salzburg, Salzburg, Austria
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michel Arock
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - David M. Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Matti Kiupel
- Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Guillen A, Smallwood K, Killick DR. Molecular pathology in the cancer clinic - where are we now and where are we headed? J Small Anim Pract 2021; 62:507-520. [PMID: 33974272 DOI: 10.1111/jsap.13330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Abstract
Molecular pathology is a developing sub-microscopic discipline of pathology that studies the effects of molecular variations and mutations on disease processes. The ultimate goal of molecular pathology in cancer is to predict risk, facilitate diagnosis and improve prognostication based on a complete understanding of the biological impact of specific molecular variations, mutations and dysregulations. This knowledge will provide the basis for customised cancer treatment, so-called precision medicine. Rapid developments in genomics have placed this field at the forefront of clinical molecular pathology and there are already a number of well-established genetic tests available for clinical use including PCR of antigen receptor rearrangement and KIT mutational analysis. Moving beyond tests assessing a single gene, there are significant research efforts utilising genomics to predict cancer risk, forecast aggressive behaviour and identify druggable mutations and therapeutic biomarkers. Researchers are also investigating the use of circulating cells and nucleic acid for clinically useful low morbidity genomic assessments. If we are to realise the full potential of molecular pathology and precision medicine there are a number of challenges to overcome. These include developing our understanding of the underlying biology (in particular intra-tumoural heterogeneity), methodological standardisation of assays, provision of adequate infrastructure and production of novel therapeutics backed by high-quality clinical data supporting the precision medicine approach. The era of molecular pathology holds the potential to revolutionise veterinary cancer care, but its impact on clinical practice will depend upon the extent to which the inherent challenges can be overcome.
Collapse
Affiliation(s)
- A Guillen
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Ln, Hatfield, AL9 7TA, UK
| | - K Smallwood
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst, Chester High Road, Neston, CH64 7TE, UK
| | - D R Killick
- Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst, Chester High Road, Neston, CH64 7TE, UK
| |
Collapse
|
9
|
Zamarian V, Ferrari R, Stefanello D, Ceciliani F, Grieco V, Minozzi G, Chiti LE, Arigoni M, Calogero R, Lecchi C. miRNA profiles of canine cutaneous mast cell tumours with early nodal metastasis and evaluation as potential biomarkers. Sci Rep 2020; 10:18918. [PMID: 33144602 PMCID: PMC7609711 DOI: 10.1038/s41598-020-75877-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/09/2020] [Indexed: 01/11/2023] Open
Abstract
Cutaneous mast cell tumours (MCTs) are common skin neoplasms in dogs. MicroRNAs (miRNAs) are post-transcriptional regulators involved in several cellular processes, and they can function as tumour promoters or suppressors. However, the role of miRNAs in canine MCTs has not yet been elucidated. Thus, the current study aimed to characterize miRNA profiles and to assess their value as biomarkers for MCTs. miRNA expression profiles were assessed in formalin-fixed, paraffin-embedded samples by next-generation sequencing. Ten samples were MCT tissues, and 7 were healthy adjacent tissues. Nine dysregulated miRNAs (DE-miRNAs) were then validated using RT-qPCR in a larger group of MCT samples, allowing the calculation of ROC curves and performance of multiple factor analysis (MFA). Pathway enrichment analysis was performed to investigate miRNA biological functions. The results showed that the expression of 63 miRNAs (18 up- and 45 downregulated) was significantly affected in MCTs. Five DE-miRNAs, namely, miR-21-5p, miR-92a-3p, miR-338, miR-379 and miR-885, were validated by RT-qPCR. The diagnostic accuracy of a panel of 3 DE-miRNAs—miR-21, miR-379 and miR-885—exhibited increased efficiency in discriminating animals with MCTs (AUC = 0.9854) and animals with lymph node metastasis (AUC = 0.8923). Multiple factor analysis revealed clusters based on nodal metastasis. Gene Ontology and KEGG analyses confirmed that the DE-miRNAs were involved in cell proliferation, survival and metastasis pathways. In conclusion, the present study demonstrated that the miRNA expression profile is changed in the MCT microenvironment, suggesting the involvement of the altered miRNAs in the epigenetic regulation of MCTs and identifying miR-21, miR-379 and miR-885 as promising biomarkers.
Collapse
Affiliation(s)
- Valentina Zamarian
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Roberta Ferrari
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Damiano Stefanello
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Valeria Grieco
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Giulietta Minozzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Lavinia Elena Chiti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Maddalena Arigoni
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, Università di Torino, 10126, Turin, Italy
| | - Raffaele Calogero
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, Università di Torino, 10126, Turin, Italy
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Makii R, Cook H, Louke D, Breitbach J, Jennings R, Premanandan C, Green EM, Fenger JM. Characterization of WWOX expression and function in canine mast cell tumors and malignant mast cell lines. BMC Vet Res 2020; 16:415. [PMID: 33129329 PMCID: PMC7603737 DOI: 10.1186/s12917-020-02638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The WW domain-containing oxidoreductase (WWOX) tumor suppressor gene is frequently lost in a variety of solid and hematopoietic malignancies in humans. Dysregulation of WWOX has been implicated as playing a key role in tumor cell survival, DNA damage repair, and genomic stability. The purpose of this study was to characterize WWOX expression in spontaneous canine mast cell tumors (MCTs) and malignant cell lines and investigate the potential contribution of WWOX loss on malignant mast cell behavior. METHODS/RESULTS WWOX expression is decreased in primary canine MCTs and malignant mast cell lines compared to normal canine bone marrow-cultured mast cells. In transformed canine mastocytoma cell lines, overexpression of WWOX or WWOX knockdown had no effect on mast cell viability. Inhibition of WWOX enhanced clonogenic survival following treatment with ionizing radiation in the C2 mast cell line. Lastly, immunohistochemistry for WWOX was performed using a canine MCT tissue microarray, demonstrating that WWOX staining intensity and percent of cells staining for WWOX is decreased in high-grade MCTs compared to low-grade MCTs. CONCLUSIONS These data suggest that WWOX expression is attenuated or lost in primary canine MCTs and malignant mast cell lines. Given the observed increase in clonogenic survival in WWOX-deficient C2 mast cells treated with ionizing radiation, further investigation of WWOX and its role in mediating the DNA damage response in malignant mast cells is warranted.
Collapse
Affiliation(s)
- Rebecca Makii
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA
| | - Hanna Cook
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA
| | - Darian Louke
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA
| | - Justin Breitbach
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Ryan Jennings
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Christopher Premanandan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Eric M Green
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA
| | - Joelle M Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA.
| |
Collapse
|
11
|
Companion canines: an under-utilised model to aid in translating anti-metastatics to the clinic. Clin Exp Metastasis 2020; 37:7-12. [PMID: 31691156 PMCID: PMC7007897 DOI: 10.1007/s10585-019-10002-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
|
12
|
Bowlt Blacklock KL, Birand Z, Selmic LE, Nelissen P, Murphy S, Blackwood L, Bass J, McKay J, Fox R, Beaver S, Starkey M. Genome-wide analysis of canine oral malignant melanoma metastasis-associated gene expression. Sci Rep 2019; 9:6511. [PMID: 31019223 PMCID: PMC6482147 DOI: 10.1038/s41598-019-42839-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Oral malignant melanoma (OMM) is the most common canine melanocytic neoplasm. Overlap between the somatic mutation profiles of canine OMM and human mucosal melanomas suggest a shared UV-independent molecular aetiology. In common with human mucosal melanomas, most canine OMM metastasise. There is no reliable means of predicting canine OMM metastasis, and systemic therapies for metastatic disease are largely palliative. Herein, we employed exon microarrays for comparative expression profiling of FFPE biopsies of 18 primary canine OMM that metastasised and 10 primary OMM that did not metastasise. Genes displaying metastasis-associated expression may be targets for anti-metastasis treatments, and biomarkers of OMM metastasis. Reduced expression of CXCL12 in the metastasising OMMs implies that the CXCR4/CXCL12 axis may be involved in OMM metastasis. Increased expression of APOBEC3A in the metastasising OMMs may indicate APOBEC3A-induced double-strand DNA breaks and pro-metastatic hypermutation. DNA double strand breakage triggers the DNA damage response network and two Fanconi anaemia DNA repair pathway members showed elevated expression in the metastasising OMMs. Cross-validation was employed to test a Linear Discriminant Analysis classifier based upon the RT-qPCR-measured expression levels of CXCL12, APOBEC3A and RPL29. Classification accuracies of 94% (metastasising OMMs) and 86% (non-metastasising OMMs) were estimated.
Collapse
Affiliation(s)
| | - Z Birand
- Animal Health Trust, Newmarket, Suffolk, UK
| | - L E Selmic
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - P Nelissen
- Dick White Referrals, Newmarket, Suffolk, UK
| | - S Murphy
- Animal Health Trust, Newmarket, Suffolk, UK
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - L Blackwood
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - J Bass
- Animal Health Trust, Newmarket, Suffolk, UK
- Finn Pathologists, Harleston, UK
| | - J McKay
- IDEXX Laboratories, Ltd, Wetherby, UK
| | - R Fox
- Finn Pathologists, Harleston, UK
| | - S Beaver
- Nationwide Laboratory Services, Poulton-le-Fylde, UK
| | - M Starkey
- Animal Health Trust, Newmarket, Suffolk, UK.
| |
Collapse
|