1
|
Crawford SG, Coker RH, O’Hara TM, Breed GA, Gelatt T, Fadely B, Burkanov V, Rivera PM, Rea LD. Fasting durations of Steller sea lion pups vary among subpopulations-evidence from two plasma metabolites. CONSERVATION PHYSIOLOGY 2023; 11:coad084. [PMID: 38026798 PMCID: PMC10673819 DOI: 10.1093/conphys/coad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Geographic differences in population growth trends are well-documented in Steller sea lions (Eumetopias jubatus), a species of North Pacific pinniped listed under the U.S. Endangered Species Act in 1990 following a marked decline in population abundance that began during the 1970s. As population growth is intrinsically linked to pup production and survival, examining factors related to pup physiological condition provides useful information to management authorities regarding potential drivers of regional differences. During dam foraging trips, pups predictably transition among three fasting phases, distinguished by the changes in the predominant metabolic byproduct. We used standardized ranges of two plasma metabolites (blood urea nitrogen and β-hydroxybutyrate) to assign pups to fasting categories (n = 1528, 1990-2016, 12 subpopulations): Recently Fed-Phase I (digestion/assimilation-expected hepatic/muscle glycogen usage), Phase II (expected lipid utilization), transitioning between Phases II-III (expected lipid utilization with increased protein reliance), or Phase III (expected protein catabolism). As anticipated, the majority of pups were classified as Recently Fed-Phase I (overall mean proportion = 0.72) and few pups as Phase III (overall mean proportion = 0.04). By further comparing pups in Short (Recently Fed-Phase II) and Long (all other pups) duration fasts, we identified three subpopulations with significantly (P < 0.03) greater proportions of pups dependent upon endogenous sources of energy for extended periods, during a life stage of somatic growth and development: the 1) central (0.27 ± 0.09) and 2) western (0.36 ± 0.13) Aleutian Island (declining population trend) and 3) southern Southeast Alaska (0.32 ± 0.06; increasing population trend) subpopulations had greater Long fast proportions than the eastern Aleutian Islands (0.10 ± 0.05; stabilized population). Due to contrasting population growth trends among these highlighted subpopulations over the past 50+ years, both density-independent and density-dependent factors likely influence the dam foraging trip duration, contributing to longer fasting durations for pups at some rookeries.
Collapse
Affiliation(s)
- Stephanie G Crawford
- Department of Biology and Wildlife and Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, USA
| | - Robert H Coker
- Montana Center for Work Physiology and Exercise Metabolism, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA
| | - Todd M O’Hara
- Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 402 Raymond Stotzer Parkway, Bldg 2, College Station, Texas 77843, USA
| | - Greg A Breed
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | - Tom Gelatt
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Brian Fadely
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Vladimir Burkanov
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Bldg. 4, Seattle, Washington 98115, USA
| | - Patricia M Rivera
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, 2141 Koyukuk Drive, Fairbanks, Alaska 99775, USA
| | - Lorrie D Rea
- Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, Alaska 99775, USA
| |
Collapse
|
2
|
Hastings KK, Jemison LA, Pendleton GW, Johnson DS, Gelatt TS. Age-specific reproduction in female Steller sea lions in Southeast Alaska. Ecol Evol 2023; 13:e10515. [PMID: 37780535 PMCID: PMC10533480 DOI: 10.1002/ece3.10515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Age-, region-, and year-specific estimates of reproduction are needed for monitoring wildlife populations during periods of ecosystem change. Population dynamics of Steller sea lions (Eumetopias jubatus) in Southeast Alaska varied regionally (with high population growth and survival in the north vs. the south) and annually (with reduced adult female survival observed following a severe marine heatwave event), but reproductive performance is currently unknown. We used mark-resighting data from 1006 Steller sea lion females marked as pups at ~3 weeks of age from 1994 to 1995 and from 2001 to 2005 and resighted from 2002 to 2019 (to a maximum age of 25) to examine age-, region-, and year-specific reproduction. In the north versus the south, age of first reproduction was earlier (beginning at age 4 vs. age 5, respectively) but annual birth probabilities of parous females were reduced by 0.05. In an average year pre-heatwave, the proportion of females with pup at the end of the pupping season peaked at ages 12-13 with ~0.60/0.65 (north/south) with pup, ~0.30/0.25 with juvenile, and ~0.10 (both regions) without a dependent. In both regions, reproductive senescence was gradual after age 12: ~0.40, 0.40, and 0.20 of females were in these reproductive states, respectively, by age 20. Correcting for neonatal mortality, true birth probabilities at peak ages were 0.66/0.72 (north/south). No cost of reproduction on female survival was detected, but pup production remained lower (-0.06) after the heatwave event, which if sustained could result in population decline in the south. Reduced pup production and greater retention of juveniles during periods of poor prey conditions may be an important strategy for Steller sea lions in Southeast Alaska, where fine-tuning reproduction based on nutritional status may improve the lifetime probability of producing pups under good conditions in a variable and less productive environment.
Collapse
Affiliation(s)
| | | | | | - Devin S. Johnson
- Protected Resources Division, National Marine Fisheries ServicePacific Islands Fisheries Science CenterHonoluluHawaiiUSA
| | - Thomas S. Gelatt
- Marine Mammal Laboratory, National Marine Fisheries ServiceAlaska Fisheries Science CenterSeattleWashingtonUSA
| |
Collapse
|
3
|
Li G, Suzuki H, Takei J, Saito M, Goto N, Uchida K, Nakagawa T, Harada H, Tanaka T, Asano T, Kaneko MK, Kato Y. Immunohistochemical Analysis Using Monoclonal Antibody PMab-269 Against Steller Sea Lion Podoplanin. Monoclon Antib Immunodiagn Immunother 2022; 41:39-44. [PMID: 35225666 DOI: 10.1089/mab.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Monoclonal antibodies (mAbs) that specifically target podoplanin (PDPN), a marker for type I alveolar cells, are required for immunohistochemical analyses. Anti-PDPN mAbs are available for many species, including human, mouse, rat, rabbit, dog, cat, bovine, pig, Tasmanian devil, alpaca, tiger, whale, goat, horse, bear, sheep, and California sea lion PDPNs. However, no anti-Steller sea lion PDPN (stePDPN) antibody has been developed. Immunohistochemical analysis showed that an anti-California sea lion PDPN mAb (PMab-269) reacted with type I alveolar cells from the Steller sea lion lung, renal glomeruli and Bowman's capsules from kidney, and lymphatic endothelial cells from the colon, indicating that PMab-269 is useful for detecting stePDPN.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Hastings KK, Johnson DS, Pendleton GW, Fadely BS, Gelatt TS. Investigating life-history traits of Steller sea lions with multistate hidden Markov mark-recapture models: Age at weaning and body size effects. Ecol Evol 2021; 11:714-734. [PMID: 33520160 PMCID: PMC7820167 DOI: 10.1002/ece3.6878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 11/07/2022] Open
Abstract
The duration of offspring care is critical to female fitness and population resilience by allowing flexibility in life-history strategies in a variable environment. Yet, for many mammals capable of extended periods of maternal care, estimates of the duration of offspring dependency are not available and the relative importance of flexibility of this trait on fitness and population viability has rarely been examined. We used data from 4,447 Steller sea lions Eumetopias jubatus from the Gulf of Alaska and multistate hidden Markov mark-recapture models to estimate age-specific weaning probabilities. Maternal care beyond age 1 was common: Weaning was later for animals from Southeast Alaska (SEAK) and Prince William Sound (PWS, weaning probabilities: 0.536-0.648/0.784-0.873 by age 1/2) compared with animals born to the west (0.714-0.855/0.798-0.938). SEAK/PWS animals were also smaller than those born farther west, suggesting a possible link. Females weaned slightly earlier (+0.080 at age 1 and 2) compared with males in SEAK only. Poor survival for weaned versus unweaned yearlings occurred in southern SEAK (female survival probabilities: 0.609 vs. 0.792) and the central Gulf (0.667 vs. 0.901), suggesting poor conditions for juveniles in these areas. First-year survival increased with neonatal body mass (NBM) linearly in the Gulf and nonlinearly in SEAK. The probability of weaning at age 1 increased linearly with NBM for SEAK animals only. Rookeries where juveniles weaned at earlier ages had lower adult female survival, but age at weaning was unrelated to population trends. Our results suggest the time to weaning may be optimized for different habitats based on long-term average conditions (e.g., prey dynamics), that may also shape body size, with limited short-term plasticity. An apparent trade-off of adult survival in favor of juvenile survival and large offspring size in the endangered Gulf of Alaska population requires further study.
Collapse
Affiliation(s)
- Kelly K. Hastings
- Division of Wildlife ConservationAlaska Department of Fish and GameJuneauAlaskaUSA
| | - Devin S. Johnson
- NOAA FisheriesAlaska Fisheries Science CenterSeattleWashingtonUSA
| | - Grey W. Pendleton
- Division of Wildlife ConservationAlaska Department of Fish and GameJuneauAlaskaUSA
| | - Brian S. Fadely
- NOAA FisheriesAlaska Fisheries Science CenterSeattleWashingtonUSA
| | - Thomas S. Gelatt
- NOAA FisheriesAlaska Fisheries Science CenterSeattleWashingtonUSA
| |
Collapse
|
5
|
Whitlock SL, Womble JN, Peterson JT. Modelling pinniped abundance and distribution by combining counts at terrestrial sites and in-water sightings. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Hastings KK, Rehberg MJ, O’corry-Crowe GM, Pendleton GW, Jemison LA, Gelatt TS. Demographic consequences and characteristics of recent population mixing and colonization in Steller sea lions, Eumetopias jubatus. J Mammal 2019. [DOI: 10.1093/jmammal/gyz192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Steller sea lions (Eumetopias jubatus) are composed of two genetically distinct metapopulations (an increasing “eastern” and a reduced and endangered “western” population, or stock for management purposes in U.S. waters) that are only recently mixing at new rookeries in northern Southeast Alaska, east of the current stock boundary. We used mark-recapture models and 18 years of resighting data of over 3,500 individuals marked at the new rookeries and at neighboring long-established rookeries in both populations to examine morphology, survival, and movement patterns of pups born at new rookeries based on whether they had mitochondrial DNA haplotypes from the western or eastern population (mtW or mtE); examine survival effects of dispersal to the Eastern Stock region for animals born in the Western Stock region; and estimate minimum proportions of animals with western genetic material in regions within Southeast Alaska. Pups born at new rookeries with mtW had similar mass, but reduced body condition and first-year survival (approximately −10%) compared to pups with mtE. mtE pups ranged more widely than mtW pups, including more to the sheltered waters of Southeast Alaska’s Inside Passage. Fitness benefits for western-born females that dispersed to Southeast Alaska were observed as higher female survival (+0.127, +0.099, and +0.032 at ages 1, 2, and 3+) and higher survival of their female offspring to breeding age (+0.15) compared to females that remained west of the boundary. We estimated that a minimum of 38% and 13% of animals in the North Outer Coast–Glacier Bay and Lynn Canal–Frederick Sound regions in Southeast Alaska, respectively, carry genetic information unique to the western population. Despite fitness benefits to western females that dispersed east, asymmetric dispersal costs or other genetic or maternal effects may limit the growth of the western genetic lineage at the new rookeries, and these factors require further study.
Collapse
Affiliation(s)
- Kelly K Hastings
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK, USA
| | - Michael J Rehberg
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK, USA
| | | | - Grey W Pendleton
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK, USA
| | - Lauri A Jemison
- Alaska Department of Fish and Game, Division of Wildlife Conservation, Anchorage, AK, USA
| | - Thomas S Gelatt
- National Marine Fisheries Service, Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA Fisheries, Seattle, WA, USA
| |
Collapse
|