1
|
Xiao Y, Yang S, Sun Y, Sah RL, Wang J, Han C. Nanoscale Morphologies on the Surface of Substrates/Scaffolds Enhance Chondrogenic Differentiation of Stem Cells: A Systematic Review of the Literature. Int J Nanomedicine 2024; 19:12743-12768. [PMID: 39634196 PMCID: PMC11615010 DOI: 10.2147/ijn.s492020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Nanoscale morphologies on the surface of substrates/scaffolds have gained considerable attention in cartilage tissue engineering for their potential to improve chondrogenic differentiation and cartilage regeneration outcomes by mimicking the topographical and biophysical properties of the extracellular matrix (ECM). To evaluate the influence of nanoscale surface morphologies on chondrogenic differentiation of stem cells and discuss available strategies, we systematically searched evidence according to the PRISMA guidelines on PubMed, Embase, Web of Science, and Cochrane (until April 2024) and registered on the OSF (osf.io/3kvdb). The inclusion criteria were (in vitro) studies reporting the chondrogenic differentiation outcomes of nanoscale morphologies on the surface of substrates/scaffolds. The risk of bias (RoB) was assessed using the JBI-adapted quasi-experimental study assessment tool. Out of 1530 retrieved articles, 14 studies met the inclusion criteria. The evidence suggests that nanoholes, nanogrills, nanoparticles with a diameter of 10-40nm, nanotubes with a diameter of 70-100nm, nanopillars with a height of 127-330nm, and hexagonal nanostructures with a periodicity of 302-733nm on the surface of substrates/scaffolds result in better cell adhesion, growth, and chondrogenic differentiation of stem cells compared to the smooth/unpatterned ones through increasing integrin expression. Large nanoparticles with 300-1200nm diameter promote pre-chondrogenic cellular aggregation. The synergistic effects of the surface nanoscale topography and other environmental physical characteristics, such as matrix stiffness, also play important in the chondrogenic differentiation of stem cells. The RoB was low in 86% (12/14) of studies and high in 14% (2/14). Our study demonstrates that nanomorphologies with specific controlled properties engineered on the surface of substrates/scaffolds enhance stem cells' chondrogenic differentiation, which may benefit cartilage regeneration. However, given the variability in experimental designs and lack of reporting across studies, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Yi Xiao
- Thoracic Surgery Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Shiyan Yang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
- Department of Head and Neck, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
| | - Yang Sun
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Robert L Sah
- Department of Bioengineering, University of California–San Diego, La Jolla, CA, 92037, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, CA, 92037, USA
| | - Jincheng Wang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Chunshan Han
- Thoracic Surgery Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| |
Collapse
|
2
|
Lin YY, Kuan CY, Chang CT, Chuang MH, Syu WS, Zhang KL, Lee CH, Lin PC, Dong GC, Lin FH. 3D-Cultured Adipose-Derived Stem Cell Spheres Using Calcium-Alginate Scaffolds for Osteoarthritis Treatment in a Mono-Iodoacetate-Induced Rat Model. Int J Mol Sci 2023; 24:ijms24087062. [PMID: 37108239 PMCID: PMC10138691 DOI: 10.3390/ijms24087062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that causes pain, cartilage deformation, and joint inflammation. Mesenchymal stem cells (MSCs) are potential therapeutic agents for OA treatment. However, the 2D culture of MSCs could potentially affect their characteristics and functionality. In this study, calcium-alginate (Ca-Ag) scaffolds were prepared for human adipose-derived stem cell (hADSC) proliferation with a homemade functionally closed process bioreactor system; the feasibility of cultured hADSC spheres in heterologous stem cell therapy for OA treatment was then evaluated. hADSC spheres were collected from Ca-Ag scaffolds by removing calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation. In this study, 2D-cultured individual hADSCs or hADSC spheres were evaluated for treatment efficacy in a monosodium iodoacetate (MIA)-induced OA rat model. The results of gait analysis and histological sectioning showed that hADSC spheres were more effective at relieving arthritis degeneration. The results of serological and blood element analyses of hADSC-treated rats indicated that the hADSC spheres were a safe treatment in vivo. This study demonstrates that hADSC spheres are a promising treatment for OA and can be applied to other stem cell therapies or regenerative medical treatments.
Collapse
Affiliation(s)
- Yu-Ying Lin
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Che-Yung Kuan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10087, Taiwan
| | - Chia-Tien Chang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ming-Hsi Chuang
- College of Management, Chung Hwa University, Hsinchu 30012, Taiwan
| | - Wan-Sin Syu
- Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan
| | - Kai-Ling Zhang
- Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan
- College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Hsin Lee
- Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan
| | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan
| | - Guo-Chung Dong
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Feng-Huei Lin
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10087, Taiwan
| |
Collapse
|
3
|
The Critical Role of Hypoxia in the Re-Differentiation of Human Articular Chondrocytes. Cells 2022; 11:cells11162553. [PMID: 36010629 PMCID: PMC9406483 DOI: 10.3390/cells11162553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
The preservation of the chondrogenic phenotype and hypoxia-related physiological microenvironment are major challenges in the 2D culture of primary human chondrocytes. To address this problem, we develop a 3D culture system generating scaffold-free spheroids from human chondrocytes. Our results highlight the chondrogenic potential of cultured human articular chondrocytes in a 3D system combined with hypoxia independently of the cartilage source. After 14 days of culture, we developed spheroids with homogenous diameter and shape from hyaline cartilage donors. Spheroids generated in hypoxia showed a significantly increased glycosaminoglycans synthesis and up-regulated the expression of SOX9, ACAN, COL2A1, COMP, and SNAI1 compared to those obtained under normoxic conditions. Therefore, we conclude that spheroids developed under hypoxic conditions modulate the expression of chondrogenesis-related genes and native tissue features better than 2D cultures. Thus, this scaffold-free 3D culture system represents a novel in vitro model that can be used for cartilage biology research.
Collapse
|
4
|
Lee SY, Lee JW. 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070939. [PMID: 35888029 PMCID: PMC9317836 DOI: 10.3390/life12070939] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Cartilage is a connective tissue that constitutes the structure of the body and consists of chondrocytes that produce considerable collagenous extracellular matrix and plentiful ground substances, such as proteoglycan and elastin fibers. Self-repair is difficult when the cartilage is damaged because of insufficient blood supply, low cellularity, and limited progenitor cell numbers. Therefore, three-dimensional (3D) culture systems, including pellet culture, hanging droplets, liquid overlays, self-injury, and spinner culture, have attracted attention. In particular, 3D spheroid culture strategies can enhance the yield of exosome production of mesenchymal stem cells (MSCs) when compared to two-dimensional culture, and can improve cellular restorative function by enhancing the paracrine effects of MSCs. Exosomes are membrane-bound extracellular vesicles, which are intercellular communication systems that carry RNAs and proteins. Information transfer affects the phenotype of recipient cells. MSC-derived exosomes can facilitate cartilage repair by promoting chondrogenic differentiation and proliferation. In this article, we reviewed recent major advances in the application of 3D culture techniques, cartilage regeneration with stem cells using 3D spheroid culture system, the effect of exosomes on chondrogenic differentiation, and chondrogenic-specific markers related to stem cell derived exosomes. Furthermore, the utilization of MSC-derived exosomes to enhance chondrogenic differentiation for osteoarthritis is discussed. If more mechanistic studies at the molecular level are conducted, MSC-spheroid-derived exosomes will supply a better therapeutic option to improve osteoarthritis.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea;
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea;
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6516; Fax: +82-32-899-6039
| |
Collapse
|
5
|
Ren L, Cong N, Han H, Zhang Z, Deng C, Zhang N, Li D. The effect of sodium metasilicate on the three-dimensional chondrogenesis of mesenchymal stem cells. Dent Mater J 2021; 40:853-862. [PMID: 34193723 DOI: 10.4012/dmj.2020-214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The benefits of different silicic concentrations on chondrogenesis of mesenchymal stem cell (MSC) are unclear. Here an in vitro scaffoldless model was used to determine the impact of different silicic concentrations on the three-dimensional chondrogenesis of MSCs. Sodium metasilicate solutions were used as the source of silica, and were added in the chondrogenic medium and replenished every 3 days. The thickness and area of cartilage; the expression of collagen II, aggrecan, and the collagen type II/I ratio; the glycosaminoglycan and cell contents; and the tangent modulus of the constructs were all significantly higher in 100 and 200 ng/mL groups compared with those in 0 and 10 ng/mL groups. All the above parameters, as well as several mechanical parameters of cartilage constructs were highest in 200 ng/mL group. Thus, 200 ng/mL sodium metasilicate could promote the chondrogenic differentiation of MSCs and the mechanical and biochemical properties of the cartilage constructs.
Collapse
Affiliation(s)
- Le Ren
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| | - Nuonuo Cong
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University
| | - Hao Han
- Medical Emergency Center, Xi'an Xiangyang International Airport
| | - Zhe Zhang
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| | - Chunni Deng
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| | - Nan Zhang
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| | - Daxu Li
- Department of Oral, The First Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
6
|
Fürsatz M, Gerges P, Wolbank S, Nürnberger S. Autonomous spheroid formation by culture plate compartmentation. Biofabrication 2021; 13. [PMID: 33513590 DOI: 10.1088/1758-5090/abe186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/29/2021] [Indexed: 11/12/2022]
Abstract
Scaffold-free 3D cell cultures (e.g. pellet cultures) are widely used in medical science, including cartilage regeneration. Their drawbacks are high time/reagent consumption and lack of early readout parameters. While optimisation was achieved by automation or simplified spheroid generation, most culture systems remain expensive or require tedious procedures. The aim of this study was to establish a system for resource efficient spheroid generation. This was achieved by compartmentation of cell culture surfaces utilising laser engraving (grid plates). This compartmentation triggered autonomous spheroid formation via rolling-up of the cell monolayer in human adipose-derived stem cells (ASC/TERT1) and human articular chondrocytes (hAC)-ASC/TERT1 co-cultures, when cultivated on grid plates under chondrogenic conditions. Plates with 3 mm grid size yielded stable diameters (about 300 μm). ASC/TERT1 spheroids fully formed within 3 weeks while co-cultures took 1-2 weeks, forming significantly faster with increasing hAC ratio (p<0.05 and 0.01 for 1:1 and 1:4 ASC/TERT1:hAC ratio respectively). Co-cultures showed slightly lower spheroid diameter, due to earlier spheroid formation and incomplete monolayer formation. However, this was associated with more regular matrix distribution in the co-culture. Both showed differentiation capacity comparable to standard pellet culture in (immune-)histochemistry and RT-qPCR. To assess usability for cartilage repair, spheroids were embedded into a hydrogel (fibrin), yielding cellular outgrowth and matrix deposition, which was especially pronounced in co-cultures. The herein presented novel cell culture system is not only a promising tool for autonomous spheroid generation with the potential of experimental and clinical application in tissue engineering but also for high-throughput analysis for both pharmaceutical and therapeutic uses.
Collapse
Affiliation(s)
- Marian Fürsatz
- Austrian Cluster of Tissue Regeneration , Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, Wien, Wien, 1200, AUSTRIA
| | - Peter Gerges
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, Wien, Wien, 1040, AUSTRIA
| | - Susanne Wolbank
- Austrian Cluster of Tissue Regeneration , Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, Wien, Wien, 1200, AUSTRIA
| | - Sylvia Nürnberger
- Medical University of Vienna, Währinger Gürtel 18-20, Wien, Wien, 1090, AUSTRIA
| |
Collapse
|
7
|
Chen YT, Lee HS, Hsieh DJ, Periasamy S, Yeh YC, Lai YP, Tarng YW. 3D composite engineered using supercritical CO 2 decellularized porcine cartilage scaffold, chondrocytes, and PRP: Role in articular cartilage regeneration. J Tissue Eng Regen Med 2020; 15:163-175. [PMID: 33258246 DOI: 10.1002/term.3162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 02/01/2023]
Abstract
At present, no definitive treatment for articular cartilage defects has been perfected. Most of the previous treatments involved multiple drilling and microfracture over defect sites with repair-related substances, which poses a limited therapeutic effect. End-stage therapy includes artificial knee joint replacement. In this study, we prepared a novel decellularized natural cartilage scaffold from porcine articular cartilage by supercritical CO2 extraction technology and three-dimensional (3D) composites made using decellularized porcine cartilage graft (dPCG) as scaffolds, platelet-rich plasma (PRP), thrombin as signals and chondrocytes as cells for the treatment of articular cartilage defects. In this study, in vitro and in vivo cartilage regeneration and the expression of chondrogenic markers were examined. Decellularized cartilage graft (dPCG) was evaluated for the extent of cell and DNA removal. Residual cartilage ECM structure was confirmed to be type II collagen by SDS PAGE and immunostaining. The new 3D composite with dPCG (100 mg and 2 × 106 chondrocytes) scaffold promotes chondrogenic marker expression in vitro. We found that the in vivo 3D composite implanted cartilage defect showed significant regeneration relative to the blank and control implant. Immunohistochemical staining showed increase of expression including Collagen type II and aggrecan in 3D composite both in vitro and in vivo studies. In this study, the bioengineered 3D composite by combining dPCG scaffold, chondrocytes, and PRP facilitated the chondrogenic marker expression in both in vitro and in vivo models with accelerated cartilage regeneration. This might serve the purpose of clinical treatment of large focal articular cartilage defects in humans in the near future.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Orthopedic, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, Republic of China.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Herng-Sheng Lee
- Department of Pathology, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, Republic of China
| | - Dar-Jen Hsieh
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, Republic of China
| | - Srinivasan Periasamy
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, Republic of China
| | - Yi-Chun Yeh
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, Republic of China
| | - Yi-Ping Lai
- R&D Center, ACRO Biomedical Co., Ltd., Kaohsiung City, Taiwan, Republic of China
| | - Yih-Wen Tarng
- Department of Orthopedic, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan, Republic of China.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| |
Collapse
|