1
|
Parhira S, Zhu G, Wangteeraprasert A, Sawong S, Suknoppakit P, Somran J, Kaewpaeng N, Pansooksan K, Pekthong D, Srisawang P. Enhancement of apoptosis in HCT116 and HepG2 cells by Coix lacryma-jobi var. lacryma-jobi seed extract in combination with sorafenib. CHINESE HERBAL MEDICINES 2025; 17:322-339. [PMID: 40256710 PMCID: PMC12009101 DOI: 10.1016/j.chmed.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 04/22/2025] Open
Abstract
Objective Coix lacryma-jobi, a highly regarded Asian herb widely used in traditional Chinese medicine, is recognized for its dual benefits in promoting overall health and treating various diseases. While it exhibits moderate anticancer efficacy when used alone, this study investigated the enhanced anticancer potential of raw and cooked Coix lacryma-jobi var. lacryma-jobi (CL) seed extracts in combination with sorafenib against HCT116 and HepG2 cancer cell lines. The combination of sorafenib with other anticancer agents, including natural extracts, has garnered significant attention as a promising strategy for developing more effective cancer therapies. Methods Dry powders of raw (R) and cooked (C) CL seeds, obtained from a local commercial source in Thailand, were extracted and fractionated using ethanol (E), dichloromethane (D), ethyl acetate (A), and water (W) to produce eight fractions: CLRE, CLCE, CLRD, CLCD, CLRA, CLCA, CLRW, and CLCW. The coixol content in raw and cooked seed extracts was quantified and expressed as μg of coixol per gram of extract. The cytotoxic effects of these fractions were evaluated against HCT116 and HepG2 cells using the MTT assay. Fractions demonstrating the most significant cytotoxic responses were combined with sorafenib to evaluate their synergistic effects. Apoptosis induction and mitochondrial membrane potential (MMP) were assessed, and the underlying mechanism of apoptosis was explored by analyzing reactive oxygen species (ROS) generation and antioxidant protein expression levels. Additionally, the combination treatment's effect on the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway was investigated. Results One gram of CLCE and CLCD extracts contained higher coixol levels (7.02 μg and 9.69 μg, respectively) compared to CLRE and CLRD (2.66 μg and 5.96 μg, respectively). Coixol content in CLRA, CLRW, and CLCW fractions was undetectable under the study conditions. All extract fractions exhibited IC50 values exceeding 1 mg/mL after 24- and 48-hour incubations with HCT116 and HepG2 cells, indicating limited cytotoxicity when used independently. CLRD and CLCD fractions were selected for combination studies at a concentration of 1 mg/mL, combined with sub-IC50 concentrations of sorafenib to minimize its side effects. This combination significantly increased cytotoxicity, inducing apoptosis in HCT116 and HepG2 cells by elevating ROS levels and reducing the expression of superoxide dismutase 2 and catalase. Furthermore, the combination treatment downregulated the PI3K/AKT/mTOR pathway, indicating a targeted anticancer mechanism. Conclusion The combination of CLCD with sorafenib demonstrates significant potential as a strategy for future anticancer therapies. This CL seed extract, cultivated and commercially available in Thailand, shows promise as a natural supplement to enhance the efficacy of chemotherapy in upcoming clinical anticancer applications.
Collapse
Affiliation(s)
- Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | | | - Suphunwadee Sawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pennapha Suknoppakit
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Khemmachat Pansooksan
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
2
|
Zeng Y, Yang J, Chen J, Pu X, Li X, Yang X, Yang L, Ding Y, Nong M, Zhang S, He J. Actional Mechanisms of Active Ingredients in Functional Food Adlay for Human Health. Molecules 2022; 27:molecules27154808. [PMID: 35956759 PMCID: PMC9369982 DOI: 10.3390/molecules27154808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Medicinal and food homologous adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) plays an important role in natural products promoting human health. We demonstrated the systematic actional mechanism of functional ingredients in adlay to promote human health, based on the PubMed, CNKI, Google, and ISI Web of Science databases from 1988 to 2022. Adlay and its extracts are rich in 30 ingredients with more than 20 health effects based on human and animal or cell cultures: they are anti-cancer, anti-inflammation, anti-obesity, liver protective, anti-virus, gastroprotective, cardiovascular protective, anti-hypertension, heart disease preventive, melanogenesis inhibiting, anti-allergy, endocrine regulating, anti-diabetes, anti-cachexia, osteoporosis preventive, analgesic, neuroprotecting, suitable for the treatment of gout arthritis, life extending, anti-fungi, and detoxifying effects. Function components with anti-oxidants are rich in adlay. These results support the notion that adlay seeds may be one of the best functional foods and further reveal the action mechanism of six major functional ingredients (oils, polysaccharides, phenols, phytosterols, coixol, and resistant starch) for combating diseases. This review paper not only reveals the action mechanisms of adding adlay to the diet to overcome 17 human diseases, but also provides a scientific basis for the development of functional foods and drugs for the treatment of human diseases.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
- Correspondence: or (Y.Z.); (J.H.); Tel.: +86-871-65894145 (Y.Z.)
| | - Jiazhen Yang
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China;
| | - Jia Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Xia Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Li’e Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Yumei Ding
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (J.C.); (X.P.); (X.L.); (X.Y.); (L.Y.); (Y.D.)
| | - Mingying Nong
- Wenshan Academy of Agricultural Sciences, Wenshan 663099, China; (M.N.); (S.Z.)
| | - Shibao Zhang
- Wenshan Academy of Agricultural Sciences, Wenshan 663099, China; (M.N.); (S.Z.)
| | - Jinbao He
- Wenshan Academy of Agricultural Sciences, Wenshan 663099, China; (M.N.); (S.Z.)
- Correspondence: or (Y.Z.); (J.H.); Tel.: +86-871-65894145 (Y.Z.)
| |
Collapse
|
3
|
Huda N, Li X, Jahan T, He Y, Guan C, Zhang K, Gao A, Georgiev MI, Zhou M. Acceleration of the genetic gain for nutraceutical improvement of adlay ( Coix L.) through genomic approaches: current status and future prospects. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nurul Huda
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangdong Li
- Southwest Guizhou Institute of Karst Regional Development, Xingyi, Guizhou, China
| | - Tanzim Jahan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaonan Guan
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ainong Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Meiliang Zhou
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
4
|
Miao G, Qin Y, Guo J, Zhang Q, Bao Y. Transcriptome characterization and expression profile of Coix lacryma-jobi L. in response to drought. PLoS One 2021; 16:e0256875. [PMID: 34478459 PMCID: PMC8415600 DOI: 10.1371/journal.pone.0256875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Coix lacryma-jobi L. is a very important economic crop widely cultivated in Southeast Asia. Drought affects more than four million square kilometers every year, and is a significant factor limiting agricultural productivity. However, relatively little is known about how Coix lacryma-jobi L. responds to drought treatments. To obtain a detailed and comprehensive understanding of the mechanisms regulating the transcriptional responses of Coix lacryma-jobi L. to drought treatment, we employed high throughput short-read sequencing of cDNA prepared from polyadenylated RNA to explore global gene expression after a seven-day drought treatment. We generated a de novo assembled transcriptome comprising 65,480 unique sequences. Differential expression analysis based on RSEM-estimated transcript abundances identified 5,315 differentially expressed genes (DEGs) when comparing samples from plants following drought-treatment and from the appropriate controls. Among these, the transcripts for 3,460 genes were increased in abundance, whereas 1,855 were decreased. Real-time quantitative PCR for 5 transcripts confirmed the changes identified by RNA-Seq. The results provide a transcriptional overview of the changes in Coix lacryma-jobi L. in response to drought, and will be very useful for studying the function of associated genes and selection of molecular marker of Coix lacryma-jobi L in the future.
Collapse
Affiliation(s)
- Guidong Miao
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
- * E-mail:
| | - Yan Qin
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
| | - Jihua Guo
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
| | - Qingxia Zhang
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
| | - Yingying Bao
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
| |
Collapse
|
5
|
Mahmood K, Orabi J, Kristensen PS, Sarup P, Jørgensen LN, Jahoor A. De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea). Sci Rep 2020; 10:13475. [PMID: 32778722 PMCID: PMC7417550 DOI: 10.1038/s41598-020-70406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Rye is used as food, feed, and for bioenergy production and remain an essential grain crop for cool temperate zones in marginal soils. Ergot is known to cause severe problems in cross-pollinated rye by contamination of harvested grains. The molecular response of the underlying mechanisms of this disease is still poorly understood due to the complex infection pattern. RNA sequencing can provide astonishing details about the transcriptional landscape, hence we employed a transcriptomic approach to identify genes in the underlying mechanism of ergot infection in rye. In this study, we generated de novo assemblies from twelve biological samples of two rye hybrids with identified contrasting phenotypic responses to ergot infection. The final transcriptome of ergot susceptible (DH372) and moderately ergot resistant (Helltop) hybrids contain 208,690 and 192,116 contigs, respectively. By applying the BUSCO pipeline, we confirmed that these transcriptome assemblies contain more than 90% of gene representation of the available orthologue groups at Virdiplantae odb10. We employed a de novo assembled and the draft reference genome of rye to count the differentially expressed genes (DEGs) between the two hybrids with and without inoculation. The gene expression comparisons revealed that 228 genes were linked to ergot infection in both hybrids. The genome ontology enrichment analysis of DEGs associated them with metabolic processes, hydrolase activity, pectinesterase activity, cell wall modification, pollen development and pollen wall assembly. In addition, gene set enrichment analysis of DEGs linked them to cell wall modification and pectinesterase activity. These results suggest that a combination of different pathways, particularly cell wall modification and pectinesterase activity contribute to the underlying mechanism that might lead to resistance against ergot in rye. Our results may pave the way to select genetic material to improve resistance against ergot through better understanding of the mechanism of ergot infection at molecular level. Furthermore, the sequence data and de novo assemblies are valuable as scientific resources for future studies in rye.
Collapse
Affiliation(s)
- Khalid Mahmood
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark. .,Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, Flakkebjerg, 4200, Slagelse, Denmark.
| | - Jihad Orabi
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark
| | | | | | - Lise Nistrup Jørgensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, Flakkebjerg, 4200, Slagelse, Denmark
| | - Ahmed Jahoor
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark.,Department of Plant Breeding, The Swedish University of Agricultural Sciences, 23053, Alnarp, Sweden
| |
Collapse
|
6
|
Kang SH, Lee WH, Lee CM, Sim JS, Won SY, Han SR, Kwon SJ, Kim JS, Kim CK, Oh TJ. De novo transcriptome sequence of Senna tora provides insights into anthraquinone biosynthesis. PLoS One 2020; 15:e0225564. [PMID: 32380515 PMCID: PMC7205477 DOI: 10.1371/journal.pone.0225564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/30/2020] [Indexed: 02/04/2023] Open
Abstract
Senna tora is an annual herb with rich source of anthraquinones that have tremendous pharmacological properties. However, there is little mention of genetic information for this species, especially regarding the biosynthetic pathways of anthraquinones. To understand the key genes and regulatory mechanism of anthraquinone biosynthesis pathways, we performed spatial and temporal transcriptome sequencing of S. tora using short RNA sequencing (RNA-Seq) and long-read isoform sequencing (Iso-Seq) technologies, and generated two unigene sets composed of 118,635 and 39,364, respectively. A comprehensive functional annotation and classification with multiple public databases identified array of genes involved in major secondary metabolite biosynthesis pathways and important transcription factor (TF) families (MYB, MYB-related, AP2/ERF, C2C2-YABBY, and bHLH). Differential expression analysis indicated that the expression level of genes involved in anthraquinone biosynthetic pathway regulates differently depending on the degree of tissues and seeds development. Furthermore, we identified that the amount of anthraquinone compounds were greater in late seeds than early ones. In conclusion, these results provide a rich resource for understanding the anthraquinone metabolism in S. tora.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
- * E-mail: (SHK); (CKK); (TJO)
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, Korea
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
- * E-mail: (SHK); (CKK); (TJO)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, Korea
- Genome-based BioIT Convergence Institute, Asan, Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Korea
- * E-mail: (SHK); (CKK); (TJO)
| |
Collapse
|
7
|
Liu H, Shi J, Cai Z, Huang Y, Lv M, Du H, Gao Q, Zuo Y, Dong Z, Huang W, Qin R, Liang C, Lai J, Jin W. Evolution and Domestication Footprints Uncovered from the Genomes of Coix. MOLECULAR PLANT 2020; 13:295-308. [PMID: 31778842 DOI: 10.1016/j.molp.2019.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/17/2019] [Accepted: 11/13/2019] [Indexed: 05/21/2023]
Abstract
Coix lacryma-jobi, a plant species closely related to Zea and Sorghum, is an important food and medicinal crop in Asia. However, no reference genome of this species has been reported, and its exact phylogeny within the Andropogoneae remains unresolved. Here, we generated a high-quality genome assembly of coix comprising ∼1.73 Gb with 44 485 predicted protein-coding genes. We found coix to be a typical diploid plant with an overall 1-to-1 syntenic relationship with the Sorghum genome, despite its drastic genome expansion (∼2.3-fold) due mainly to the activity of transposable elements. Phylogenetic analysis revealed that coix diverged with sorghum ∼10.41 million years ago, which was ∼1.49 million years later than the divergence between sorghum and maize. Resequencing of 27 additional coix accessions revealed that they could be unambiguously separated into wild relatives and cultivars, and suggested that coix experienced a strong genetic bottleneck, resulting in the loss of about half of the genetic diversity during domestication, even though many traits have remained undomesticated. Our data not only provide novel comparative genomic and evolutionary insights into the Andropogoneae lineage, but also an important resource that will greatly benefit molecular breeding of this important crop.
Collapse
Affiliation(s)
- Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Junpeng Shi
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Zexi Cai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Menglu Lv
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, P. R. China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, P. R. China
| | - Yi Zuo
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Rui Qin
- Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of Hubei Province, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P. R. China.
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
8
|
Kang SH, Kim B, Choi BS, Lee HO, Kim NH, Lee SJ, Kim HS, Shin MJ, Kim HW, Nam K, Kang KD, Kwon SJ, Oh TJ, Lee SC, Kim CK. Genome Assembly and Annotation of Soft-Shelled Adlay ( Coix lacryma-jobi Variety ma-yuen), a Cereal and Medicinal Crop in the Poaceae Family. FRONTIERS IN PLANT SCIENCE 2020; 11:630. [PMID: 32528499 PMCID: PMC7247446 DOI: 10.3389/fpls.2020.00630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/23/2020] [Indexed: 05/21/2023]
Abstract
Coix lacryma-jobi, also called adlay or Job's tears, is an annual herbal plant belonging to the Poaceae family that has been cultivated as a cereal and medicinal crop in Asia. Despite its importance, however, genomic resources for better understanding this plant species at the molecular level and informing improved breeding strategies remain limited. To address this, we generated a draft genome of the C. lacryma-jobi variety ma-yuen (soft-shelled adlay) Korean cultivar, Johyun, by de novo assembly, using PacBio and Illumina sequencing data. A total of 3,362 scaffold sequences, 1.28 Gb in length, were assembled, representing 82.1% of the estimated genome size (1.56 Gb). Genome completeness was confirmed by the presence of 91.4% of the BUSCO angiosperm genes and mapping ratio of 98.3% of Illumina paired-end reads. We found that approximately 77.0% of the genome is occupied by repeat sequences, most of which are Gypsy and Copia-type retrotransposons, and evidence-based genome annotation predicts 39,574 protein-coding genes, 85.5% of which were functionally annotated. We further predict that soft-shelled adlay diverged from a common ancestor with sorghum 9.0-11.2 MYA. Transcriptome profiling revealed 3,988 genes that are differentially expressed in seeds relative to other tissues, of which 1,470 genes were strongly up-regulated in seeds and the most enriched Gene Ontology terms were assigned to carbohydrate and protein metabolism. In addition, we identified 76 storage protein genes including 18 seed-specific coixin genes and 13 candidate genes involved in biosynthesis of benzoxazinoids (BXs) including coixol, a unique BX compound found in C. lacryma-jobi species. The characterization of those genes can further our understanding of unique traits of soft-shelled adlay, such as high seed protein content and medicinal compound biosynthesis. Taken together, our genome sequence data will provide a valuable resource for molecular breeding and pharmacological study of this plant species.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan, South Korea
| | | | | | | | | | | | | | | | | | | | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan, South Korea
| | - Sang-Choon Lee
- Phyzen Co., Seongnam, South Korea
- *Correspondence: Sang-Choon Lee,
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
- Chang-Kug Kim,
| |
Collapse
|