1
|
Gusmão L, Antão-Sousa S, Faustino M, Abovich MA, Aguirre D, Alghafri R, Alves C, Amorim A, Arévalo C, Baldassarri L, Barletta-Carrillo C, Berardi G, Bobillo C, Borjas L, Braganholi DF, Brehm A, Builes JJ, Cainé L, Carvalho EF, Carvalho M, Catelli L, Cicarelli RMB, Contreras A, Corach D, Di Marco FG, Diederiche MV, Domingues P, Espinoza M, Fernandéz JM, García MG, García O, Gaviria A, Gomes I, Grattapaglia D, Henao J, Hernandez A, Ibarra AA, Lima G, Manterola IM, Marrero C, Martins JA, Mendoza L, Mosquera A, Nascimento EC, Onofri V, Pancorbo MM, Pestano JJ, Plaza G, Porto MJ, Posada YC, Rebelo ML, Riego E, Rodenbusch R, Rodríguez A, Rodríguez A, Sanchez-Diz P, Santos S, Simão F, Siza Fuentes LM, Sumita D, Tomas C, Toscanini U, Trindade-Filho A, Turchi C, Vullo C, Yurrebaso I, Pereira V, Pinto N. X-chromosomal STRs: Metapopulations and mutation rates. Forensic Sci Int Genet 2025; 76:103232. [PMID: 39893847 DOI: 10.1016/j.fsigen.2025.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
The analysis of STRs located on the X chromosome has been one of the strategies used to address complex kinship cases. Its usefulness is, however, limited by the low availability of population haplotype frequency data and lack of knowledge on the probability of mutations. Due to the large amount of data required to obtain reliable estimates, it is important to investigate the possibility of grouping data from populations with similar profiles when calculating these parameters. To better understand the partition of genetic diversity among human populations for the X-STRs most used in forensics, an analysis was carried out based on data available in the literature and new data (23,949 haplotypes in total; from these 10,445 new) obtained through collaborative exercises within the Spanish and Portuguese Working Group of the International Society for Forensic Genetics. Based on the available population data, a similarity in X-STR profiles was found in European populations, and in East Asian populations, except for some isolates. A greater complexity was found for African, South American, and South and Southeast Asian populations, preventing their grouping into large metapopulations. New segregation data on 2273 father/mother/daughter trios were also obtained, aiming for a more thorough analysis of X-STR mutation rates. After combining our data with published information on father/mother/daughter trios, no mutations were detected in 13 out of 37 loci analyzed. For the remaining loci, mutation rates varied between 2.68 × 10-4 (DXS7133) and 1.07x10-2 (DXS10135), being 5.2 times higher in the male (4.16 ×10-3) than in the female (8.01 ×10-4) germline.
Collapse
Affiliation(s)
- L Gusmão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - S Antão-Sousa
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - M Faustino
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - M A Abovich
- Banco Nacional de Datos Genéticos, Buenos Aires, Argentina and Sección Histocompatibilidad, Unidad Inmunología e Histocompatibilidad, Hospital General de Agudos Dr. Carlos G. Durand, CABA, Buenos Aires, Argentina
| | - D Aguirre
- Laboratorio Genes SAS, Medellín, Colombia
| | - R Alghafri
- General Department of Forensic Sciences and Criminology, Dubai Police General Head Quarters, Dubai, United Arab Emirates
| | - C Alves
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Portugal
| | - A Amorim
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
| | - C Arévalo
- Laboratorio Biología-ADN, Comisaría General de Policía Científica, Madrid, Spain and Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Universidad de Alcalá de Henares, Madrid, Spain
| | - L Baldassarri
- Laboratorio di Genetica Forense de la Università Cattolica del Sacro Cuore di Roma, Rome, Italy
| | - C Barletta-Carrillo
- Laboratorio de Genética Humana, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - G Berardi
- PRICAI - Fundación Favaloro, Buenos Aires, Argentina
| | - C Bobillo
- Servicio de Huellas Digitales Genéticos (SHDG) and Cátedra de Genética y Bioquímica Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - L Borjas
- Laboratorio de Genética Molecular, Unidad de Genética Médica, Facultad de Medicina, Universidad del Zulia, Zulia, Venezuela
| | - D F Braganholi
- Laboratório de Investigação de Paternidade-NAC, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - A Brehm
- Laboratório de Genética Humana, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - J J Builes
- Laboratorio Genes SAS, Medellín, Colombia
| | - L Cainé
- Serviço de Genética e Biologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. - Delegação do Norte, Porto, Portugal; Faculdade de Medicina da Universidade do Porto, Portugal
| | - E F Carvalho
- DNA Diagnostic Laboratory, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - M Carvalho
- Serviço de Genética e Biologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. - Delegação do Centro, Coimbra, Portugal
| | - L Catelli
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team (EAAF), Córdoba, Argentina
| | - R M B Cicarelli
- Laboratório de Investigação de Paternidade-NAC, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - A Contreras
- Laboratorio Regional de Genética Forense - Poder Judicial de Rio Negro, Rio Negro, Argentina
| | - D Corach
- Servicio de Huellas Digitales Genéticos (SHDG) and Cátedra de Genética y Bioquímica Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - F G Di Marco
- Laboratorio ManLab, Area de Filiaciones, Buenos Aires, Argentina
| | - M V Diederiche
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz - UESC, Ilhéus, Bahia, Brazil
| | - P Domingues
- DNA Diagnostic Laboratory, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - M Espinoza
- Departamento de Ciencias Forenses, Sección de Bioquímica, Unidad de Genética Forense, Poder Judicial, San José, Costa Rica
| | - J M Fernandéz
- Departamento de Biología, Servicio de Criminalística, Dirección General de la Policía y la Guardia Civil, ámbito Guardia Civil, Spain
| | - M G García
- Laboratorio ManLab, Area de Filiaciones, Buenos Aires, Argentina
| | - O García
- Sección de Genética Forense, Area de Laboratorio Ertzaintza, Bizkaia, Spain
| | - A Gaviria
- Laboratorio de Genética Molecular and Hemocentro Nacional - Cruz Roja Ecuatoriana, Quito, Ecuador
| | - I Gomes
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - D Grattapaglia
- Heréditas Tecnologia em Análise de DNA, Brasília, Brazil
| | - J Henao
- Laboratorio de Genética Médica, Universidad Tecnológica de Pereira, Facultad de Ciencias de la Salud, Pereira, Colombia
| | - A Hernandez
- Instituto Nacional de Toxicología y Ciencias Forenses, Delegación de Canarias, Santa Cruz de Tenerife, Spain
| | - A A Ibarra
- Laboratorio IdentiGEN - Universidad de Antioquia, Medellín, Colombia
| | - G Lima
- Serviço de Genética e Biologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. - Delegação do Norte, Porto, Portugal
| | - I M Manterola
- Servicio Genómica - SGIker - Universidad del País Vasco (UPV-EHU), Bilbao, Spain
| | - C Marrero
- Laboratorio Genomik C.A., Valencia, Venezuela
| | - J A Martins
- Research Centre for Biochemistry and Molecular Biology at the Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - L Mendoza
- Laboratorio Genes SAS, Medellín, Colombia
| | - A Mosquera
- Forensic Genetics Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - E C Nascimento
- Coordenação de Genética Forense, Departamento de Polícia Técnica da Bahia, Salvador, Brazil
| | - V Onofri
- Legal Medicine Unit, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | - M M Pancorbo
- Banco de ADN, Universidad del País Vasco (UPV/EHU), Vitoria, Gasteiz, Spain
| | - J J Pestano
- Laboratorio de Genética Forense, Facultad de Medicina, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - G Plaza
- NEODIAGNOSTICA, SL, Lleida, Spain
| | - M J Porto
- Serviço de Genética e Biologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. - Delegação do Centro, Coimbra, Portugal
| | - Y C Posada
- Laboratorio IdentiGEN - Universidad de Antioquia, Medellín, Colombia
| | - M L Rebelo
- Serviço de Genética e Biologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, I.P. - Delegação do Norte, Porto, Portugal
| | - E Riego
- Unidad de Parentesco e Identificación Humana por ADN, Referencia Laboratorio Clínico, Dominican Republic
| | - R Rodenbusch
- Laboratório PeritosLab Forense, Porto Alegre, Brazil
| | - A Rodríguez
- Departamento de Ciencias Forenses, Sección de Bioquímica, Unidad de Genética Forense, Poder Judicial, San José, Costa Rica
| | - A Rodríguez
- Forensic Genetics Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - S Santos
- Human and Medical Genetics Laboratory, Federal University of Pará, Belém, Brazil
| | - F Simão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | - D Sumita
- Genomic Engenharia Molecular Ltda., São Paulo, Brasil
| | - C Tomas
- Section of Forensic Genetics - Department of Forensic Medicine, Faculty of Health and Medical Sciences - University of Copenhagen, Copenhagen, Denmark
| | - U Toscanini
- PRICAI - Fundación Favaloro, Buenos Aires, Argentina
| | - A Trindade-Filho
- Instituto de Pesquisa de DNA Forense - Polícia Civil do Distrito Federal, Brasília, Brazil
| | - C Turchi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - C Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team (EAAF), Córdoba, Argentina
| | - I Yurrebaso
- Sección de Genética Forense, Area de Laboratorio Ertzaintza, Bizkaia, Spain
| | - V Pereira
- Section of Forensic Genetics - Department of Forensic Medicine, Faculty of Health and Medical Sciences - University of Copenhagen, Copenhagen, Denmark
| | - N Pinto
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Portugal; Centro de Matemática da Universidade do Porto (CMUP), Porto, Portugal.
| |
Collapse
|
2
|
Petretto E, Dettori ML, Luigi-Sierra MG, Noce A, Pazzola M, Vacca GM, Molina A, Martínez A, Goyache F, Carolan S, Amills M. Investigating the footprint of post-domestication dispersal on the diversity of modern European, African and Asian goats. Genet Sel Evol 2024; 56:55. [PMID: 39068382 PMCID: PMC11282621 DOI: 10.1186/s12711-024-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Goats were domesticated in the Fertile Crescent about 10,000 years before present (YBP) and subsequently spread across Eurasia and Africa. This dispersal is expected to generate a gradient of declining genetic diversity with increasing distance from the areas of early livestock management. Previous studies have reported the existence of such genetic cline in European goat populations, but they were based on a limited number of microsatellite markers. Here, we have analyzed data generated by the AdaptMap project and other studies. More specifically, we have used the geographic coordinates and estimates of the observed (Ho) and expected (He) heterozygosities of 1077 European, 1187 African and 617 Asian goats belonging to 38, 43 and 22 different breeds, respectively, to find out whether genetic diversity and distance to Ganj Dareh, a Neolithic settlement in western Iran for which evidence of an early management of domestic goats has been obtained, are significantly correlated. RESULTS Principal component and ADMIXTURE analyses revealed an incomplete regional differentiation of European breeds, but two genetic clusters representing Northern Europe and the British-Irish Isles were remarkably differentiated from the remaining European populations. In African breeds, we observed five main clusters: (1) North Africa, (2) West Africa, (3) East Africa, (4) South Africa, and (5) Madagascar. Regarding Asian breeds, three well differentiated West Asian, South Asian and East Asian groups were observed. For European and Asian goats, no strong evidence of significant correlations between Ho and He and distance to Ganj Dareh was found. In contrast, in African breeds we detected a significant gradient of diversity, which decreased with distance to Ganj Dareh. CONCLUSIONS The detection of a genetic cline associated with distance to the Ganj Dareh in African but not in European or Asian goat breeds might reflect differences in the post-domestication dispersal process and subsequent migratory movements associated with the management of caprine populations from these three continents.
Collapse
Affiliation(s)
- Elena Petretto
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | - María Gracia Luigi-Sierra
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antonia Noce
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | | | - Antonio Molina
- Department of Genetics, University of Cordoba, 14071, Córdoba, Spain
| | - Amparo Martínez
- Department of Genetics, University of Cordoba, 14071, Córdoba, Spain
| | - Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | | | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
3
|
Santana J, del Pino M, Morales J, Fregel R, Hagenblad J, Morquecho A, Brito-Mayor A, Henríquez P, Jiménez J, Serrano JG, Sánchez-Cañadillas E, Ordóñez AC, Gilson SP. The chronology of the human colonization of the Canary Islands. Proc Natl Acad Sci U S A 2024; 121:e2302924121. [PMID: 38950368 PMCID: PMC11252820 DOI: 10.1073/pnas.2302924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
The human colonization of the Canary Islands represents the sole known expansion of Berber communities into the Atlantic Ocean and is an example of marine dispersal carried out by an African population. While this island colonization shows similarities to the populating of other islands across the world, several questions still need to be answered before this case can be included in wider debates regarding patterns of initial colonization and human settlement, human-environment interactions, and the emergence of island identities. Specifically, the chronology of the first human settlement of the Canary Islands remains disputed due to differing estimates of the timing of its first colonization. This absence of a consensus has resulted in divergent hypotheses regarding the motivations that led early settlers to migrate to the islands, e.g., ecological or demographic. Distinct motivations would imply differences in the strategies and dynamics of colonization; thus, identifying them is crucial to understanding how these populations developed in such environments. In response, the current study assembles a comprehensive dataset of the most reliable radiocarbon dates, which were used for building Bayesian models of colonization. The findings suggest that i) the Romans most likely discovered the islands around the 1st century BCE; ii) Berber groups from western North Africa first set foot on one of the islands closest to the African mainland sometime between the 1st and 3rd centuries CE; iii) Roman and Berber societies did not live simultaneously in the Canary Islands; and iv) the Berber people rapidly spread throughout the archipelago.
Collapse
Affiliation(s)
- Jonathan Santana
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| | - Miguel del Pino
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| | - Jacob Morales
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| | - Rosa Fregel
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, La Laguna38200, Spain
| | - Jenny Hagenblad
- Department of Physics, Chemistry and Biology, Linköping University, Linköping583 30, Sweden
| | - Aarón Morquecho
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| | - Aitor Brito-Mayor
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| | - Pedro Henríquez
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| | - Jared Jiménez
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| | - Javier G. Serrano
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, La Laguna38200, Spain
| | - Elías Sánchez-Cañadillas
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| | - Alejandra C. Ordóñez
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| | - Simon-Pierre Gilson
- G.I. Tarha, Departamento de Ciencias Históricas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria35003, Spain
| |
Collapse
|
4
|
Puga M, Serrano JG, García EL, González Carracedo MA, Jiménez-Canino R, Pino-Yanes M, Karlsson R, Sullivan PF, Fregel R. El Hierro Genome Study: A Genomic and Health Study in an Isolated Canary Island Population. J Pers Med 2024; 14:626. [PMID: 38929847 PMCID: PMC11204744 DOI: 10.3390/jpm14060626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
El Hierro is the smallest and westernmost island of the Canary Islands, whose population derives from an admixture of different ancestral components and that has been subjected to genetic isolation. We established the "El Hierro Genome Study" to characterize the health status and the genetic composition of ~10% of the current population of the island, accounting for a total of 1054 participants. Detailed demographic and clinical data and a blood sample for DNA extraction were obtained from each participant. Genomic genotyping was performed with the Global Screening Array (Illumina). The genetic composition of El Hierro was analyzed in a subset of 416 unrelated individuals by characterizing the mitochondrial DNA (mtDNA) and Y-chromosome haplogroups and performing principal component analyses (PCAs). In order to explore signatures of isolation, runs of homozygosity (ROHs) were also estimated. Among the participants, high blood pressure, hypercholesterolemia, and diabetes were the most prevalent conditions. The most common mtDNA haplogroups observed were of North African indigenous origin, while the Y-chromosome ones were mainly European. The PCA showed that the El Hierro population clusters near 1000 Genomes' European population but with a shift toward African populations. Moreover, the ROH analysis revealed some individuals with an important portion of their genomes with ROHs exceeding 400 Mb. Overall, these results confirmed that the "El Hierro Genome" cohort offers an opportunity to study the genetic basis of several diseases in an unexplored isolated population.
Collapse
Affiliation(s)
- Marta Puga
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Javier G. Serrano
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - Elsa L. García
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Mario A. González Carracedo
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands (IUETSPC), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Rubén Jiménez-Canino
- Genomics Service, Servicio General de Apoyo a la Investigación, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rosa Fregel
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| |
Collapse
|
5
|
Cabrera VM. New Canary Islands Roman mediated settlement hypothesis deduced from coalescence ages of curated maternal indigenous lineages. Sci Rep 2024; 14:11150. [PMID: 38750053 PMCID: PMC11096394 DOI: 10.1038/s41598-024-61731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Numerous genetic studies have contributed to reconstructing the human history of the Canary Islands population. The recent use of new ancient DNA targeted enrichment and next-generation sequencing techniques on new Canary Islands samples have greatly improved these molecular results. However, the bulk of the available data is still provided by the classic mitochondrial DNA phylogenetic and phylogeographic studies carried out on the indigenous, historical, and extant human populations of the Canary Islands. In the present study, making use of all the accumulated mitochondrial information, the existence of DNA contamination and archaeological sample misidentification in those samples is evidenced. Following a thorough review of these cases, the new phylogeographic analysis revealed the existence of a heterogeneous indigenous Canarian population, asymmetrically distributed across the various islands, which most likely descended from a unique mainland settlement. These new results and new proposed coalescent ages are compatible with a Roman-mediated arrival driven by the exploitation of the purple dye manufacture in the Canary Islands.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200, San Cristobal de La Laguna, Spain.
| |
Collapse
|
6
|
Herrera-Herrera AV, Padrón-Herrera H, Iriarte E, Alberto-Barroso V, Moreno-Benítez MA, Mallol C. Fecal biomarkers and micromorphological indicators of sheep penning and flooring at La Fortaleza pre-Hispanic site (Gran Canaria, Canary Islands). iScience 2024; 27:109171. [PMID: 38414849 PMCID: PMC10897890 DOI: 10.1016/j.isci.2024.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
This study explores the lipid content and micromorphological features of sediment samples from two dwelling structures at the pre-Hispanic site of La Fortaleza in Santa Lucía de Tirajana (Gran Canaria, Spain). Previous field identification of possible sedimentary excrements inside the dwellings motivated chromatographic fecal biomarker analysis and micromorphology. The micromorphological samples reveal a complex dung-rich stratified sequence involving different layers of mixed composition, including reworked dung, clay, wood ash, and domestic refuse. The results of the lipid analysis corroborate the fecal nature of the sample and indicate the source animal: sheep. Coupled with the field evidence, the data suggest that the deposit is anthropogenic and represents a sequence of floor foundations, dung floors, and domestic and architectural refuse. This study provides valuable taxonomic and site use data for the understanding of the aboriginal societies of the Canary Islands and shows the efficacy of combining field observations with high-resolution geoarchaeological methods.
Collapse
Affiliation(s)
- Antonio V Herrera-Herrera
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, 2, 38206 San Cristóbal de La Laguna, Spain
- Departamento de Química, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/nº., 38206 San Cristóbal de La Laguna (Tenerife), Spain
| | - Héctor Padrón-Herrera
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, 2, 38206 San Cristóbal de La Laguna, Spain
| | - Eneko Iriarte
- Laboratory of Human Evolution-IsoTOPIK Stable Isotope Laboratory, Department of History, Geography & Communication, Edificio de I+D+i, Universidad de Burgos, Pl. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Verónica Alberto-Barroso
- Tibicena. Arqueología y Patrimonio, C/ Arco, 6, 35004 Las Palmas de Gran Canaria (Gran Canaria), Spain
| | | | - Carolina Mallol
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, 2, 38206 San Cristóbal de La Laguna, Spain
- Departamento de Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna (ULL), Campus de Guajara, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
7
|
Senczuk G, Macrì M, Di Civita M, Mastrangelo S, Del Rosario Fresno M, Capote J, Pilla F, Delgado JV, Amills M, Martínez A. The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data. Genet Sel Evol 2024; 56:2. [PMID: 38172652 PMCID: PMC10763158 DOI: 10.1186/s12711-023-00869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The presence of goats in the Canary Islands dates back to the late 1st millennium BC, which coincides with the colonization by the Amazigh settlers. However, the exact geographic origin of Canarian goats is uncertain since the Amazigh peoples were distributed over a wide spatial range. Nowadays, three Canarian breeds (Palmera, Majorera and Tinerfeña) are officially recognized, along with two distinct South and North Tinerfeña ecotypes, with the South Tinerfeña and Majorera goats thriving in arid and dry semi-desertic environments and the Palmera and North Tinerfeña goats are adapted to humid and temperate areas that are influenced by trade winds. Genotypes for 224 Canarian goats were generated using the Illumina Goat single nucleotide polymorphism (SNP)50 BeadChip. By merging these data with the genotypes from 1007 individuals of African and Southern European ancestry, our aim was to ascertain the geographic origin of the Canarian goats and identify genes associated with adaptation to diverse environmental conditions. RESULTS The diversity indices of the Canarian breeds align with most of those of the analyzed local breeds from Africa and Europe, except for the Palmera goats that showed lower levels of genetic variation. The Canarian breeds demonstrate a significant genetic differentiation compared to other populations, which indicates a history of prolonged geographic isolation. Moreover, the phylogenetic reconstruction indicated that the ancestry of the Canarian goats is fundamentally North African rather than West African. The ADMIXTURE and the TreeMix analyses showed no evidence of gene flow between Canarian goats and other continental breeds. The analysis of runs of homozygosity (ROH) identified 13 ROH islands while the window-based FST method detected 25 genomic regions under selection. Major signals of selection were found on Capra hircus (CHI) chromosomes 6, 7, and 10 using various comparisons and methods. CONCLUSIONS This genome-wide analysis sheds new light on the evolutionary history of the four breeds that inhabit the Canary Islands. Our findings suggest a North African origin of the Canarian goats. In addition, within the genomic regions highlighted by the ROH and FST approaches, several genes related to body size and heat tolerance were identified.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Martina Macrì
- Animal Breeding Consulting S.L., 14014, Córdoba, Spain
- Universidad de Córdoba, 14071, Córdoba, Spain
| | - Marika Di Civita
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | | | - Juan Capote
- Instituto Canario de Investigaciones Científicas, 38260, Tenerife, Spain
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | | | - Marcel Amills
- CRAG, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | |
Collapse
|
8
|
Sánchez-Cañadillas E, Beaumont J, Santana-Cabrera J, Gorton M, Arnay-de-la-Rosa M. The early lives of the islanders: Stable isotope analysis of incremental dentine collagen from the prehispanic period of the Canary Islands. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:300-317. [PMID: 37530169 DOI: 10.1002/ajpa.24828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES This study presents isotopic information for incremental dentine collagen and bone bulk collagen from individuals from the Canary Islands (Tenerife and Gran Canaria) to explore dietary differences during childhood life. MATERIALS AND METHODS Eight individuals have been studied, which comprises 122 δ15 N and δ13 C incremental dentine measurements and eight bulk bone collagen analyses. A baseline of potentially consumed food sources has been developed for comparative purposes. A food reconstruction using isotopic transferred signals (FRUITS) model of probable contributions of each food source towards the diet of each individual has been developed. All samples but one belongs to the later period of indigenous occupation of the archipelago. RESULTS The dentine collagen data are presented in correlated δ13 C and δ15 N plots per individual, showing the isotopic changes throughout time. δ15 N values for each individual tend to be variable whereas δ13 C data are generally more stable with a range of +9.1 to +14‰ for δ15 N and -17.4 to -20.8‰ for δ13 C. CONCLUSION The isotopic analysis allows for the reconstruction of eight dietary profiles, which allow us to estimate the different dietary protein sources. The FRUITS model shows different percentages of the primary food sources for each individual. Where both δ13 C and δ15 N are elevated, this could be indicative of a higher marine contribution to the diet. There appear to be two main dietary profiles identifiable in the dataset and these may be related to changes in status or place of residence. Short-term variations in δ13 C and δ15 N and opposing co-variance of isotopic values can be indicative of nutritional stress, although metabolic changes during growth are also considered.
Collapse
Affiliation(s)
- Elías Sánchez-Cañadillas
- Departamento de Geografía e Historia, Unidad de Docencia e Investigación de Prehistoria, Arqueología e Historia Antigua, Facultad de Humanidades, Universidad de La Laguna, San Cristobal de La Laguna, Spain
- Departamento de Ciencias Históricas, Facultad de Geografía e Historia, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Julia Beaumont
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, UK
| | - Jonathan Santana-Cabrera
- Departamento de Ciencias Históricas, Facultad de Geografía e Historia, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marise Gorton
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, UK
| | - Matilde Arnay-de-la-Rosa
- Departamento de Geografía e Historia, Unidad de Docencia e Investigación de Prehistoria, Arqueología e Historia Antigua, Facultad de Humanidades, Universidad de La Laguna, San Cristobal de La Laguna, Spain
| |
Collapse
|
9
|
Moots HM, Antonio M, Sawyer S, Spence JP, Oberreiter V, Weiß CL, Lucci M, Cherifi YMS, La Pastina F, Genchi F, Praxmeier E, Zagorc B, Cheronet O, Özdoğan KT, Demetz L, Amrani S, Candilio F, De Angelis D, Gasperetti G, Fernandes D, Gao Z, Fantar M, Coppa A, Pritchard JK, Pinhasi R. A genetic history of continuity and mobility in the Iron Age central Mediterranean. Nat Ecol Evol 2023; 7:1515-1524. [PMID: 37592021 DOI: 10.1038/s41559-023-02143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/30/2023] [Indexed: 08/19/2023]
Abstract
The Iron Age was a dynamic period in central Mediterranean history, with the expansion of Greek and Phoenician colonies and the growth of Carthage into the dominant maritime power of the Mediterranean. These events were facilitated by the ease of long-distance travel following major advances in seafaring. We know from the archaeological record that trade goods and materials were moving across great distances in unprecedented quantities, but it is unclear how these patterns correlate with human mobility. Here, to investigate population mobility and interactions directly, we sequenced the genomes of 30 ancient individuals from coastal cities around the central Mediterranean, in Tunisia, Sardinia and central Italy. We observe a meaningful contribution of autochthonous populations, as well as highly heterogeneous ancestry including many individuals with non-local ancestries from other parts of the Mediterranean region. These results highlight both the role of local populations and the extreme interconnectedness of populations in the Iron Age Mediterranean. By studying these trans-Mediterranean neighbours together, we explore the complex interplay between local continuity and mobility that shaped the Iron Age societies of the central Mediterranean.
Collapse
Affiliation(s)
- Hannah M Moots
- Stanford Archaeology Center, Stanford University, Stanford, CA, USA
- Department of Anthropology, Stanford University, Stanford, CA, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Margaret Antonio
- Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | | | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Clemens L Weiß
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michaela Lucci
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Yahia Mehdi Seddik Cherifi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Cardiolo-Oncology Research Collaborative Group (CORCG), Faculty of Medicine, Benyoucef Benkhedda University, Algiers, Algeria
- Molecular Pathology, University Paul Sabatier Toulouse III, Toulouse, France
| | | | - Francesco Genchi
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
- Department of Oriental Studies, Sapienza University of Rome, Rome, Italy
| | - Elisa Praxmeier
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of History and Art History, Utrecht University, Utrecht, the Netherlands
| | - Lea Demetz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Selma Amrani
- LBEIG, Population Genetics and Conservation Unit, Department of Cellular and Molecular Biology-Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | | | - Daniela De Angelis
- Museo Nazionale Etrusco di Tarquinia, Direzione Generale Musei Lazio, Rome, Italy
| | - Gabriella Gasperetti
- Soprintendenza Archeologia, belle arti e paesaggio per le province di Sassari e Nuoro, Sassari, Italy
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ziyue Gao
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Mounir Fantar
- Département des Monuments et des Sites Antiques-Institut National du Patrimoine INP, Tunis, Tunisia
| | - Alfredo Coppa
- Department of Biology, Stanford University, Stanford, CA, USA
- Dipartimento di Storia Antropologia Religioni Arte Spettacolo, Sapienza Università di Roma, Rome, Italy
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Genetics, Harvard Medical School, Cambridge, MA, USA.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Serrano JG, Ordóñez AC, Santana J, Sánchez-Cañadillas E, Arnay M, Rodríguez-Rodríguez A, Morales J, Velasco-Vázquez J, Alberto-Barroso V, Delgado-Darias T, de Mercadal MCC, Hernández JC, Moreno-Benítez MA, Pais J, Ringbauer H, Sikora M, McColl H, Pino-Yanes M, Ferrer MH, Bustamante CD, Fregel R. The genomic history of the indigenous people of the Canary Islands. Nat Commun 2023; 14:4641. [PMID: 37582830 PMCID: PMC10427657 DOI: 10.1038/s41467-023-40198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
The indigenous population of the Canary Islands, which colonized the archipelago around the 3rd century CE, provides both a window into the past of North Africa and a unique model to explore the effects of insularity. We generate genome-wide data from 40 individuals from the seven islands, dated between the 3rd-16rd centuries CE. Along with components already present in Moroccan Neolithic populations, the Canarian natives show signatures related to Bronze Age expansions in Eurasia and trans-Saharan migrations. The lack of gene flow between islands and constant or decreasing effective population sizes suggest that populations were isolated. While some island populations maintained relatively high genetic diversity, with the only detected bottleneck coinciding with the colonization time, other islands with fewer natural resources show the effects of insularity and isolation. Finally, consistent genetic differentiation between eastern and western islands points to a more complex colonization process than previously thought.
Collapse
Affiliation(s)
- Javier G Serrano
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Alejandra C Ordóñez
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Jonathan Santana
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Elías Sánchez-Cañadillas
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Matilde Arnay
- Bioanthropology: Paleopathology, Diet and Nutrition in Ancient Populations Group, Department of Prehistory, Anthropology and Ancient History, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Amelia Rodríguez-Rodríguez
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Jacob Morales
- Tarha Group, Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Javier Velasco-Vázquez
- Servicio de Patrimonio Histórico, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | | | | | - Juan Carlos Hernández
- Museo Arqueológico de La Gomera, San Sebastián de La Gomera, Santa Cruz de Tenerife, Spain
| | | | - Jorge Pais
- Museo Arqueológico Benahoarita, Los Llanos de Aridane, Santa Cruz de Tenerife, Spain
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano Hernández Ferrer
- Molecular Genetics and Biodiversity Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Rosa Fregel
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Havaš Auguštin D, Šarac J, Reidla M, Tamm E, Grahovac B, Kapović M, Novokmet N, Rudan P, Missoni S, Marjanović D, Korolija M. Refining the Global Phylogeny of Mitochondrial N1a, X, and HV2 Haplogroups Based on Rare Mitogenomes from Croatian Isolates. Genes (Basel) 2023; 14:1614. [PMID: 37628665 PMCID: PMC10454736 DOI: 10.3390/genes14081614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has been used for decades as a predominant tool in population genetics and as a valuable addition to forensic genetic research, owing to its unique maternal inheritance pattern that enables the tracing of individuals along the maternal lineage across numerous generations. The dynamic interplay between evolutionary forces, primarily genetic drift, bottlenecks, and the founder effect, can exert significant influence on genetic profiles. Consequently, the Adriatic islands have accumulated a subset of lineages that exhibits remarkable absence or rarity within other European populations. This distinctive genetic composition underscores the islands' potential as a significant resource in phylogenetic research, with implications reaching beyond regional boundaries to contribute to a global understanding. In the initial attempt to expand the mitochondrial forensic database of the Croatian population with haplotypes from small isolated communities, we sequenced mitogenomes of rare haplogroups from different Croatian island and mainland populations using next-generation sequencing (NGS). In the next step and based on the obtained results, we refined the global phylogeny of haplogroup N1a, HV2, and X by analyzing rare haplotypes, which are absent from the current phylogenetic tree. The trees were based on 16 novel and 52 previously published samples, revealing completely novel branches in the X and HV2 haplogroups and a new European cluster in the ancestral N1a variant, previously believed to be an exclusively African-Asian haplogroup. The research emphasizes the importance of investigating geographically isolated populations and their unique characteristics within a global context.
Collapse
Affiliation(s)
- Dubravka Havaš Auguštin
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Jelena Šarac
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Maere Reidla
- Institute of Genomics, University of Tartu, 50090 Tartu, Estonia
| | - Erika Tamm
- Institute of Genomics, University of Tartu, 50090 Tartu, Estonia
| | | | | | | | - Pavao Rudan
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Saša Missoni
- Institute for Anthropological Research, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, J. J. Strossmayer University, 31000 Osijek, Croatia
| | - Damir Marjanović
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia; (D.H.A.)
- Institute for Anthropological Research, 10000 Zagreb, Croatia
- Genetics and Bioengineering Department, International Burch University, 71000 Sarajevo, Bosnia and Herzegovina
| | - Marina Korolija
- Forensic Science Centre “Ivan Vučetić”, Ministry of the Interior, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
13
|
Aizpurua-Iraola J, Abdeli A, Benhassine T, Calafell F, Comas D. Whole mitogenomes reveal that NW Africa has acted both as a source and a destination for multiple human movements. Sci Rep 2023; 13:10395. [PMID: 37369751 DOI: 10.1038/s41598-023-37549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
Despite being enclosed between the Mediterranean Sea and the Sahara Desert, North Africa has been the scenario of multiple human migrations that have shaped the genetic structure of its present-day populations. Despite its richness, North Africa remains underrepresented in genomic studies. To overcome this, we have sequenced and analyzed 264 mitogenomes from the Algerian Chaoui-speaking Imazighen (a.k.a. Berbers) living in the Aurès region. The maternal genetic composition of the Aurès is similar to Arab populations in the region, dominated by West Eurasian lineages with a moderate presence of M1/U6 North African and L sub-Saharan lineages. When focusing on the time and geographic origin of the North African specific clades within the non-autochthonous haplogroups, different geographical neighboring regions contributed to the North African maternal gene pool during time periods that could be attributed to previously suggested admixture events in the region, since Paleolithic times to recent historical movements such as the Arabization. We have also observed the role of North Africa as a source of geneflow mainly in Southern European regions since Neolithic times. Finally, the present work constitutes an effort to increase the representation of North African populations in genetic databases, which is key to understand their history.
Collapse
Affiliation(s)
- Julen Aizpurua-Iraola
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Amine Abdeli
- Laboratorie de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Traki Benhassine
- Laboratorie de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
14
|
García-Olivares V, Rubio-Rodríguez LA, Muñoz-Barrera A, Díaz-de Usera A, Jáspez D, Iñigo-Campos A, Rodríguez Pérez MDC, Cabrera de León A, Lorenzo-Salazar JM, González-Montelongo R, Cabrera VM, Flores C. Digging into the admixture strata of current-day Canary Islanders based on mitogenomes. iScience 2022; 26:105907. [PMID: 36647378 PMCID: PMC9840145 DOI: 10.1016/j.isci.2022.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
The conquest of the Canary Islands by Europeans began at the beginning of the 15th century and culminated in 1496 with the surrender of the aborigines. The collapse of the aboriginal population during the conquest and the arrival of settlers caused a drastic change in the demographic composition of the archipelago. To shed light on this historical process, we analyzed 896 mitogenomes of current inhabitants from the seven main islands. Our findings confirm the continuity of aboriginal maternal contributions and the persistence of their genetic footprints in the current population, even at higher levels (>60% on average) than previously evidenced. Moreover, the age estimates for most autochthonous founder lineages support a first aboriginal arrival to the islands at the beginning of the first millennium. We also revealed for the first time that the main recognizable genetic influences from Europe are from Portuguese and Galicians.
Collapse
Affiliation(s)
- Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain,Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Antonio Iñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - Antonio Cabrera de León
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain,Área de Medicina Preventiva y Salud Pública, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain,Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain,Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain,Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain,Corresponding author
| |
Collapse
|
15
|
Developing CIRdb as a catalog of natural genetic variation in the Canary Islanders. Sci Rep 2022; 12:16132. [PMID: 36168029 PMCID: PMC9514705 DOI: 10.1038/s41598-022-20442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
The current inhabitants of the Canary Islands have a unique genetic makeup in the European diversity landscape due to the existence of African footprints from recent admixture events, especially of North African components (> 20%). The underrepresentation of non-Europeans in genetic studies and the sizable North African ancestry, which is nearly absent from all existing catalogs of worldwide genetic diversity, justify the need to develop CIRdb, a population-specific reference catalog of natural genetic variation in the Canary Islanders. Based on array genotyping of the selected unrelated donors and comparisons against available datasets from European, sub-Saharan, and North African populations, we illustrate the intermediate genetic differentiation of Canary Islanders between Europeans and North Africans and the existence of within-population differences that are likely driven by genetic isolation. Here we describe the overall design and the methods that are being implemented to further develop CIRdb. This resource will help to strengthen the implementation of Precision Medicine in this population by contributing to increase the diversity in genetic studies. Among others, this will translate into improved ability to fine map disease genes and simplify the identification of causal variants and estimate the prevalence of unattended Mendelian diseases.
Collapse
|
16
|
Silva M, Oteo-García G, Martiniano R, Guimarães J, von Tersch M, Madour A, Shoeib T, Fichera A, Justeau P, Foody MGB, McGrath K, Barrachina A, Palomar V, Dulias K, Yau B, Gandini F, Clarke DJ, Rosa A, Brehm A, Flaquer A, Rito T, Olivieri A, Achilli A, Torroni A, Gómez-Carballa A, Salas A, Bryk J, Ditchfield PW, Alexander M, Pala M, Soares PA, Edwards CJ, Richards MB. Biomolecular insights into North African-related ancestry, mobility and diet in eleventh-century Al-Andalus. Sci Rep 2021; 11:18121. [PMID: 34518562 PMCID: PMC8438022 DOI: 10.1038/s41598-021-95996-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/27/2021] [Indexed: 01/26/2023] Open
Abstract
Historical records document medieval immigration from North Africa to Iberia to create Islamic al-Andalus. Here, we present a low-coverage genome of an eleventh century CE man buried in an Islamic necropolis in Segorbe, near Valencia, Spain. Uniparental lineages indicate North African ancestry, but at the autosomal level he displays a mosaic of North African and European-like ancestries, distinct from any present-day population. Altogether, the genome-wide evidence, stable isotope results and the age of the burial indicate that his ancestry was ultimately a result of admixture between recently arrived Amazigh people (Berbers) and the population inhabiting the Peninsula prior to the Islamic conquest. We detect differences between our sample and a previously published group of contemporary individuals from Valencia, exemplifying how detailed, small-scale aDNA studies can illuminate fine-grained regional and temporal differences. His genome demonstrates how ancient DNA studies can capture portraits of past genetic variation that have been erased by later demographic shifts-in this case, most likely the seventeenth century CE expulsion of formerly Islamic communities as tolerance dissipated following the Reconquista by the Catholic kingdoms of the north.
Collapse
Affiliation(s)
- Marina Silva
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - Gonzalo Oteo-García
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Rui Martiniano
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - João Guimarães
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - Ali Madour
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Tarek Shoeib
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- Department of Forensic Science, Faculty of Biomedical Science, University of Benghazi, P.O. Box: 1308, Benghazi, Libya
| | - Alessandro Fichera
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Pierre Justeau
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - M George B Foody
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Krista McGrath
- BioArCh, Department of Archaeology, University of York, York, UK
- Department of Prehistory and Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Amparo Barrachina
- Servei d'Investigacions Arqueològiques i Prehistòriques - Museu Belles Arts de Castelló, Av. Germans Bou, 28, 12003, Castellón, Spain
| | - Vicente Palomar
- Museo Municipal de Arqueología y Etnología de Segorbe, Calle Colón, 98, 12400, Segorbe, Castellón, Spain
| | - Katharina Dulias
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
- BioArCh, Department of Archaeology, University of York, York, UK
- Institut für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, 38106, Braunschweig, Germany
| | - Bobby Yau
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Francesca Gandini
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Douglas J Clarke
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Alexandra Rosa
- Faculty of Life Sciences, University of Madeira, Campus of Penteada, 9000-390, Funchal, Portugal
- Human Genetics Laboratory, University of Madeira, Campus of Penteada, 9000-390, Funchal, Portugal
| | - António Brehm
- Human Genetics Laboratory, University of Madeira, Campus of Penteada, 9000-390, Funchal, Portugal
| | - Antònia Flaquer
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU University, Munich, Germany
| | - Teresa Rito
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani, Università di Pavia, 27100, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani, Università di Pavia, 27100, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani, Università di Pavia, 27100, Pavia, Italy
| | - Alberto Gómez-Carballa
- Grupo de Investigacion en Genetica, Vacunas, Infecciones y Pediatria (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Galicia, Spain
| | - Antonio Salas
- Grupo de Investigacion en Genetica, Vacunas, Infecciones y Pediatria (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Jaroslaw Bryk
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Peter W Ditchfield
- School of Archaeology, University of Oxford, 1 South Parks Road, Oxford, OX1 3TG, UK
| | | | - Maria Pala
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Pedro A Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ceiridwen J Edwards
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Martin B Richards
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
17
|
Delgado-Darias T, Alberto-Barroso V, Velasco-Vázquez J. Oral conditions of the pre-Hispanic mummies of Gran Canaria (Canary Islands, Spain). INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 34:155-162. [PMID: 34271409 DOI: 10.1016/j.ijpp.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To analyse the oral conditions of pre-Hispanic mummies from Gran Canaria (5th-11th centuries AD), comparing the results with published data from the non-mummified population. MATERIALS 440 teeth and 764 alveoli of 30 adult mummies. METHODS Macroscopic examination of pathological and non-pathological features of the oral cavity, using standardized criteria. RESULTS The mummies reveal frequent dental caries (11.8%), especially affecting molars (27.6%), a high prevalence of calculus (66.3%) and periodontal disease (34.9%). The average wear is characterized by extensive dentine exposure. Periapical lesions (10.6%) and antemortem tooth loss (AMTL) (15.9%) are common. A high percentage of individuals exhibit linear enamel hypoplasia (LEH) (84%). Except for periodontitis, the data indicate the absence of significant statistical differences between the mummies and the skeletonized sample. CONCLUSIONS The profile of the dental pathologies of the mummies indicates a carbohydrate-rich diet that contained abrasive grit from the stone querns used to grind cereals. Comparison of the oral conditions of mummified and skeletonized remains shows no differences in access to food resources, reinforcing the recent rejection of the traditional interpretation of the mummies as the pre-eminent status group of Canarian society. SIGNIFICANCE This is the first study to delve into the oral conditions of pre-Hispanic mummified remains from Gran Canaria. The results have implications for the framing of research questions based on the social status of these mummies. LIMITATION The preserved sample of mummified remains of ancient Canarians is small. SUGGESTION FOR FURTHER RESEARCH Comparative analysis from a diachronic perspective would improve understanding of the historical development of ancient Canarians.
Collapse
|
18
|
Marrero‐Guillamón I. More than a mountain: the contentious multiplicity of Tindaya (Fuerteventura, Canary Islands). JOURNAL OF THE ROYAL ANTHROPOLOGICAL INSTITUTE 2021. [DOI: 10.1111/1467-9655.13547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Sánchez-Cañadillas E, Carballo J, Padrón E, Hernández JC, Melián GV, Navarro Mederos JF, Pérez NM, Arnay-de-la-Rosa M. Dietary changes across time: Studying the indigenous period of La Gomera using δ 13 C and δ 15 N stable isotope analysis and radiocarbon dating. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:137-155. [PMID: 33404099 DOI: 10.1002/ajpa.24220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES This article presents new radiocarbon and isotopic data to provide further information about the diet of the indigenous population of La Gomera and its possible changes across time. MATERIALS AND METHODS δ13 C and δ15 N of 53 human and 19 faunal samples from different sites on the island have been obtained and analyzed. Of these, 52 have been radiocarbon dated to provide insight on chronological changes. RESULTS Human dates range from the 3rd to 15th centuries AD, while faunal dates range from the 1st to 17th centuries AD. Stable carbon and nitrogen values are significantly different between the human and goat samples and have also a trophic increase of 3.4‰. Although male and female δ15 N data are not significantly different. Both δ13 C and δ15 N values of both human and animal samples tend to discretely decrease over time. DISCUSSION Radiocarbon dates from humans correlate with other dates obtained in the rest of the archipelago. Animal radiocarbon dates generally coincide except for one date, which requires further study. Isotopic δ15 N data suggest a mix of marine and terrestrial protein consumption in humans, the latter being more abundant given the seasonality of the first. δ13 C data also suggest a possible mixed diet in humans, with a predominance of C3 plants, like Hordeum vulgare, the only grain found in archaeological sites so far. Variations of both δ13 C and δ15 N over time suggest a slight modification on the diet, which could be related to environmental changes.
Collapse
Affiliation(s)
- Elías Sánchez-Cañadillas
- Unidad de Docencia e Investigación de Prehistoria, Arqueología e Historia Antigua, Facultad de Humanidades, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Jared Carballo
- Unidad de Docencia e Investigación de Prehistoria, Arqueología e Historia Antigua, Facultad de Humanidades, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Eleazar Padrón
- Instituto Tecnológico y de Energías Renovables (ITER), Área de Medio ambiente, Tenerife, Canary Islands, Spain.,Instituto Volcanológico de Canarias (INVOLCAN), Tenerife, Canary Islands, Spain
| | - Juan Carlos Hernández
- Cabildo Insular de La Gomera y Museo Arqueológico de La Gomera, San Sebastián de La Gomera, Spain
| | - Gladys V Melián
- Instituto Tecnológico y de Energías Renovables (ITER), Área de Medio ambiente, Tenerife, Canary Islands, Spain.,Instituto Volcanológico de Canarias (INVOLCAN), Tenerife, Canary Islands, Spain
| | - Juan Francisco Navarro Mederos
- Unidad de Docencia e Investigación de Prehistoria, Arqueología e Historia Antigua, Facultad de Humanidades, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Nemesio M Pérez
- Instituto Tecnológico y de Energías Renovables (ITER), Área de Medio ambiente, Tenerife, Canary Islands, Spain.,Instituto Volcanológico de Canarias (INVOLCAN), Tenerife, Canary Islands, Spain
| | - Matilde Arnay-de-la-Rosa
- Unidad de Docencia e Investigación de Prehistoria, Arqueología e Historia Antigua, Facultad de Humanidades, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
20
|
Fregel R, Ordóñez AC, Serrano JG. The demography of the Canary Islands from a genetic perspective. Hum Mol Genet 2020; 30:R64-R71. [PMID: 33295602 DOI: 10.1093/hmg/ddaa262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
The establishment of European colonies across the world had important demographic consequences because it brought together diverse and distant civilizations for the first time. One clear example of this phenomenon is observed in the Canary Islands. The modern Canarian population is mainly the result of the admixture of natives of North African origin and European colonizers. However, additional migratory flows reached the islands due to the importation of enslaved Africans to cultivate sugarcane and the intense commercial contact with the American continent. In this review, we evaluate how the genetic analysis of indigenous, historical and current populations has provided a glimpse into the Canary Islands' complex genetic composition. We show that each island subpopulation's characterization is needed to fully disentangle the demographic history of the Canarian archipelago. Finally, we discuss what research avenues remain to be explored to improve our knowledge of the impact that the European colonization had on its native population.
Collapse
Affiliation(s)
- Rosa Fregel
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Alejandra C Ordóñez
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain.,Departamento Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Javier G Serrano
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
21
|
Drosou K, Collin TC, Freeman PJ, Loynes R, Freemont T. The first reported case of the rare mitochondrial haplotype H4a1 in ancient Egypt. Sci Rep 2020; 10:17037. [PMID: 33046824 PMCID: PMC7550590 DOI: 10.1038/s41598-020-74114-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/04/2020] [Indexed: 11/10/2022] Open
Abstract
Takabuti, was a female who lived in ancient Egypt during the 25th Dynasty, c.660 BCE. Her mummified remains were brought to Belfast, Northern Ireland, in 1834 and are currently displayed in the Ulster Museum. To gain insight into Takabuti’s ancestry, we used deep sampling of vertebral bone, under X-ray control, to obtain non-contaminated bone tissue from which we extracted ancient DNA (aDNA) using established protocols. We targeted the maternally inherited mitochondrial DNA (mtDNA), known to be highly informative for human ancestry, and identified 38 single nucleotide variants using next generation sequencing. The specific combination of these SNVs suggests that Takabuti belonged to mitochondrial haplogroup H4a1. Neither H4 nor H4a1 have been reported in ancient Egyptian samples, prior to this study. The modern distribution of H4a1 is rare and sporadic and has been identified in areas including the Canary Islands, southern Iberia and the Lebanon. H4a1 has also been reported in ancient samples from Bell Beaker and Unetice contexts in Germany, as well as Bronze Age Bulgaria. We believe that this is an important finding because first, it adds to the depth of knowledge about the distribution of the H4a1 haplogroup in existing mtDNA, thus creating a baseline for future occurrences of this haplogroup in ancient Egyptian remains. Second, it is of great importance for archaeological sciences, since a predominantly European haplogroup has been identified in an Egyptian individual in Southern Egypt, prior to the Roman and Greek influx (332BCE).
Collapse
Affiliation(s)
- Konstantina Drosou
- KNH Centre for Biomedical Egyptology, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PG, UK. .,Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK.
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Peter J Freeman
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M19 9PG, UK
| | - Robert Loynes
- KNH Centre for Biomedical Egyptology, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PG, UK
| | - Tony Freemont
- KNH Centre for Biomedical Egyptology, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PG, UK
| |
Collapse
|
22
|
Hagenblad J, Morales J. An Evolutionary Approach to the History of Barley ( Hordeum vulgare) Cultivation in the Canary Islands. THE AFRICAN ARCHAEOLOGICAL REVIEW 2020; 37:579-595. [PMID: 33268912 PMCID: PMC7677147 DOI: 10.1007/s10437-020-09415-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
The Canary Islands are an archipelago that lies about 100 km west of North Africa. Barley (Hordeum vulgare) has been continuously cultivated since the colonization of the islands. To investigate the agricultural history of the islands, the DNA from multiple individuals of six extant landraces of barley was sequenced, and the resulting data were analyzed with ABC modeling. Estimates of separation times of barley populations on the different islands and the mainland were congruent with archaeological dating of the earliest settlements on the islands. The results of the genetic analyses were consistent with the continuous cultivation of barley on Lanzarote island since it was first colonized, but suggested cultivation was carried out at a smaller scale than on Gran Canaria and Tenerife. Contrary to archaeological evidence and early written historical sources, the genetic analyses suggest that barley was cultivated on a larger scale on Tenerife than on Gran Canaria. The genetic analysis of contemporary barley added support to the dating of the colonization of the islands and pointed to the need for more archaeological data concerning barley cultivation on Tenerife.
Collapse
Affiliation(s)
- Jenny Hagenblad
- IFM Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Jacob Morales
- Department of Historical Sciences, University of Las Palmas de Gran Canaria, Pérez del Toro 1, 35003 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
23
|
Abstract
More than 25 years after it was unveiled, Eduardo Chillida’sMonument to Tolerancehas been neither built nor abandoned—it is, rather, suspended. From the outset, the project, which consists in digging a vast cubic cave inside the mountain of Tindaya (Fuerteventura, Canary Islands), has faced the opposition of environmental activists, who argue that it is incompatible with the mountain’s status as a protected site. Drawing from anthropological approaches to infrastructure and art, this article unpacks the Monument’s actual existence as an unrealized project that has been partly actualized through anticipatory practices such as exhibitions and economic aspirations. The article contributes to the theorization of suspension by combining a focus on the temporal multiplicity of anticipation with an attention to the materiality of unbuilt entities.
Collapse
|
24
|
Arauna LR, Hellenthal G, Comas D. Dissecting human North African gene-flow into its western coastal surroundings. Proc Biol Sci 2020; 286:20190471. [PMID: 31039721 DOI: 10.1098/rspb.2019.0471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
North African history and populations have exerted a pivotal influence on surrounding geographical regions, although scant genetic studies have addressed this issue. Our aim is to understand human historical migrations in the coastal surroundings of North Africa. We built a refined genome-wide dataset of North African populations to unearth the fine-scale genetic structure of the region, using haplotype information. The results suggest that the gene-flow from North Africa into the European Mediterranean coast (Tuscany and the Iberian Peninsula) arrived mainly from the Mediterranean coast of North Africa. In Tuscany, this North African admixture date estimate suggests the movement of peoples during the fall of the Roman Empire around the fourth century. In the Iberian Peninsula, the North African component probably reflects the impact of the Arab expansion since the seventh century and the subsequent expansion of the Christian Kingdoms. By contrast, the North African component in the Canary Islands has a source genetically related to present-day people from the Atlantic North African coast. We also find sub-Saharan gene-flow from the Senegambia region in the Canary Islands. Specifically, we detect a complex signal of admixture involving Atlantic, Senegambian and European sources intermixing around the fifteenth century, soon after the Castilian conquest. Our results highlight the differential genetic influence of North Africa into the surrounding coast and show that specific historical events have not only had a socio-cultural impact but additionally modified the gene pool of the populations.
Collapse
Affiliation(s)
- Lara R Arauna
- 1 Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra , Barcelona , Spain
| | - Garrett Hellenthal
- 2 UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London , London , UK
| | - David Comas
- 1 Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra , Barcelona , Spain
| |
Collapse
|