1
|
Avelar M, Coppola C, d’Ettorre A, Ienco A, Parisi ML, Basosi R, Santucci A, Olivucci M, Sinicropi A. In Silico Study of a Bacteriorhodopsin/TiO 2 Hybrid System at the Molecular Level. J Chem Theory Comput 2025; 21:3231-3245. [PMID: 40037620 PMCID: PMC11948329 DOI: 10.1021/acs.jctc.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Bacteriorhodopsin (bR) is a light-harvesting membrane protein that represents a promising sensitizer of TiO2 for photovoltaic and photoelectrochemical devices. However, despite numerous experimental studies, the molecular-level understanding of the bR/TiO2 hybrid system is still unsatisfactory. In this contribution, we report the construction and analysis of an atomistic model of such a system. To do so, both steered molecular dynamics-molecular dynamics and quantum mechanics/molecular mechanics computations are applied to four different bR orientations on the anatase TiO2 surface. The resulting bR/TiO2 models are then used to compute the light absorption maxima changes relative to those of bR. We show that all four models reproduce the experimentally observed blue-shift value induced by bR binding on TiO2 and could be used to study the binding and binding-induced protein modifications. We conclude that the constructed models could provide a basis for future studies aiming to simulate the complex long-range electron transfer mechanism in bR/TiO2-based solar energy conversion devices as well as in engineering bR to achieve enhanced efficiencies.
Collapse
Affiliation(s)
- Mayra Avelar
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Carmen Coppola
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi
a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - Alessio d’Ettorre
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Andrea Ienco
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
| | - Maria Laura Parisi
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi
a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - Riccardo Basosi
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi
a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - Annalisa Santucci
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Massimo Olivucci
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Department
of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Adalgisa Sinicropi
- R2ES
Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Italian
National Council for Research - Institute for the Chemistry of OrganoMetallic
Compounds (CNR-ICCOM), 50019 Sesto Fiorentino, Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi
a Grande Interfase, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Shibata K, Oda K, Nishizawa T, Hazama Y, Ono R, Takaramoto S, Bagherzadeh R, Yawo H, Nureki O, Inoue K, Akiyama H. Twisting and Protonation of Retinal Chromophore Regulate Channel Gating of Channelrhodopsin C1C2. J Am Chem Soc 2023; 145:10779-10789. [PMID: 37129501 DOI: 10.1021/jacs.3c01879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels and central optogenetic tools that can control neuronal activity with high temporal resolution at the single-cell level. Although their application in optogenetics has rapidly progressed, it is unsolved how their channels open and close. ChRs transport ions through a series of interlocking elementary processes that occur over a broad time scale of subpicoseconds to seconds. During these processes, the retinal chromophore functions as a channel regulatory domain and transfers the optical input as local structural changes to the channel operating domain, the helices, leading to channel gating. Thus, the core question on channel gating dynamics is how the retinal chromophore structure changes throughout the photocycle and what rate-limits the kinetics. Here, we investigated the structural changes in the retinal chromophore of canonical ChR, C1C2, in all photointermediates using time-resolved resonance Raman spectroscopy. Moreover, to reveal the rate-limiting factors of the photocycle and channel gating, we measured the kinetic isotope effect of all photoreaction processes using laser flash photolysis and laser patch clamp, respectively. Spectroscopic and electrophysiological results provided the following understanding of the channel gating: the retinal chromophore highly twists upon the retinal Schiff base (RSB) deprotonation, causing the surrounding helices to move and open the channel. The ion-conducting pathway includes the RSB, where inflowing water mediates the proton to the deprotonated RSB. The twisting of the retinal chromophore relaxes upon the RSB reprotonation, which closes the channel. The RSB reprotonation rate-limits the channel closing.
Collapse
Affiliation(s)
- Keisei Shibata
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Kazumasa Oda
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo 113-0034, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo 113-0034, Japan
| | - Yuji Hazama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Ryohei Ono
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shunki Takaramoto
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Reza Bagherzadeh
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hiromu Yawo
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Osamu Nureki
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo 113-0034, Japan
| | - Keiichi Inoue
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hidefumi Akiyama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
3
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
4
|
Villagra D, Fuentealba P, Spodine E, Vega A, Costa de Santana R, Verdejo R, Lopez-Manchado MA, Aguilar-Bolados H. Effect of terbium(III) species on the structure and physical properties of polyurethane (TPU). POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Mei G, Cavini CM, Mamaeva N, Wang P, DeGrip WJ, Rothschild KJ. Optical Switching Between Long-lived States of Opsin Transmembrane Voltage Sensors. Photochem Photobiol 2021; 97:1001-1015. [PMID: 33817800 PMCID: PMC8596844 DOI: 10.1111/php.13428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
Opsin-based transmembrane voltage sensors (OTVSs) are membrane proteins increasingly used in optogenetic applications to measure voltage changes across cellular membranes. In order to better understand the photophysical properties of OTVSs, we used a combination of UV-Vis absorption, fluorescence and FT-Raman spectroscopy to characterize QuasAr2 and NovArch, two closely related mutants derived from the proton pump archaerhodopsin-3 (AR3). We find both QuasAr2 and NovArch can be optically cycled repeatedly between O-like and M-like states using 5-min exposure to red (660 nm) and near-UV (405 nm) light. Longer red-light exposure resulted in the formation of a long-lived photoproduct similar to pink membrane, previously found to be a photoproduct of the BR O intermediate with a 9-cis retinylidene chromophore configuration. However, unlike QuasAr2 whose O-like state is stable in the dark, NovArch exhibits an O-like state which slowly partially decays in the dark to a stable M-like form with a deprotonated Schiff base and a 13-cis,15-anti retinylidene chromophore configuration. These results reveal a previously unknown complexity in the photochemistry of OTVSs including the ability to optically switch between different long-lived states. The possible molecular basis of these newly discovered properties along with potential optogenetic and biotechnological applications are discussed.
Collapse
Affiliation(s)
- Gaoxiang Mei
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Cesar M. Cavini
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Natalia Mamaeva
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | | | - Willem J. DeGrip
- Department of Biophysical Organic ChemistryLeiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Department of BiochemistryRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Kenneth J. Rothschild
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| |
Collapse
|
6
|
Tahir MA, Dina NE, Cheng H, Valev VK, Zhang L. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. NANOSCALE 2021; 13:11593-11634. [PMID: 34231627 DOI: 10.1039/d1nr00708d] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years, bioanalytical surface-enhanced Raman spectroscopy (SERS) has blossomed into a fast-growing research area. Owing to its high sensitivity and outstanding multiplexing ability, SERS is an effective analytical technique that has excellent potential in bioanalysis and diagnosis, as demonstrated by its increasing applications in vivo. SERS allows the rapid detection of molecular species based on direct and indirect strategies. Because it benefits from the tunable surface properties of nanostructures, it finds a broad range of applications with clinical relevance, such as biological sensing, drug delivery and live cell imaging assays. Of particular interest are early-stage-cancer detection and the fast detection of pathogens. Here, we present a comprehensive survey of SERS-based assays, from basic considerations to bioanalytical applications. Our main focus is on SERS-based pathogen detection methods as point-of-care solutions for early bacterial infection detection and chronic disease diagnosis. Additionally, various promising in vivo applications of SERS are surveyed. Furthermore, we provide a brief outlook of recent endeavours and we discuss future prospects and limitations for SERS, as a reliable approach for rapid and sensitive bioanalysis and diagnosis.
Collapse
Affiliation(s)
- Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, Peoples' Republic of China.
| | | | | | | | | |
Collapse
|
7
|
Abstract
This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed.
Collapse
|
8
|
Friedrich D, Brünig FN, Nieuwkoop AJ, Netz RR, Hegemann P, Oschkinat H. Collective exchange processes reveal an active site proton cage in bacteriorhodopsin. Commun Biol 2020; 3:4. [PMID: 31925324 PMCID: PMC6941954 DOI: 10.1038/s42003-019-0733-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
Proton translocation across membranes is vital to all kingdoms of life. Mechanistically, it relies on characteristic proton flows and modifications of hydrogen bonding patterns, termed protonation dynamics, which can be directly observed by fast magic angle spinning (MAS) NMR. Here, we demonstrate that reversible proton displacement in the active site of bacteriorhodopsin already takes place in its equilibrated dark-state, providing new information on the underlying hydrogen exchange processes. In particular, MAS NMR reveals proton exchange at D85 and the retinal Schiff base, suggesting a tautomeric equilibrium and thus partial ionization of D85. We provide evidence for a proton cage and detect a preformed proton path between D85 and the proton shuttle R82. The protons at D96 and D85 exchange with water, in line with ab initio molecular dynamics simulations. We propose that retinal isomerization makes the observed proton exchange processes irreversible and delivers a proton towards the extracellular release site. Daniel Friedrich et al. show that reversible proton translocation occurs in the dark–state of bacteriorhodopsin, involving the retinal Schiff base and D85 exchanging protons with H2O. They find evidence of an active site proton cage and possible proton transfer via R82.
Collapse
Affiliation(s)
- Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.,Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, 02215, USA
| | - Florian N Brünig
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Andrew J Nieuwkoop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Peter Hegemann
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115, Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany. .,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.
| |
Collapse
|
9
|
Mei G, Mamaeva N, Ganapathy S, Wang P, DeGrip WJ, Rothschild KJ. Analog Retinal Redshifts Visible Absorption of QuasAr Transmembrane Voltage Sensors into Near-infrared. Photochem Photobiol 2019; 96:55-66. [PMID: 31556123 PMCID: PMC7004139 DOI: 10.1111/php.13169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/01/2022]
Abstract
Opsin‐based transmembrane voltage sensors (OTVSs) are increasingly important tools for neuroscience enabling neural function in complex brain circuits to be explored in live, behaving animals. However, the visible wavelengths required for fluorescence excitation of the current generation of OTVSs limit optogenetic imaging in the brain to depths of only a few mm due to the strong absorption and scattering of visible light by biological tissues. We report that substitution of the native A1 retinal chromophore of the widely used QuasAr1/2 OTVSs with the retinal analog MMAR containing a methylamino‐modified dimethylphenyl ring results in over a 100‐nm redshift of the maxima of the absorption and fluorescence emission bands to near 700 and 840 nm, respectively. FT‐Raman spectroscopy reveals that at pH 7 QuasAr1 with both the A1 and MMAR chromophores possess predominantly an all‐trans protonated Schiff base configuration with the MMAR chromophore exhibiting increased torsion of the polyene single‐/double‐bond system similar to the O‐intermediate of the BR photocycle. In contrast, the A1 and the MMAR chromophores of QuasAr2 exist partially in a 13‐cis PSB configuration. These results demonstrate that QuasArs containing the MMAR chromophore are attractive candidates for use as NIR‐OTVSs, especially for applications such as deep brain imaging.
Collapse
Affiliation(s)
- Gaoxiang Mei
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA
| | - Natalia Mamaeva
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA
| | - Srividya Ganapathy
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA
| |
Collapse
|
10
|
Lee HJ, Huang KC, Mei G, Zong C, Mamaeva N, DeGrip WJ, Rothschild KJ, Cheng JX. Electronic Preresonance Stimulated Raman Scattering Imaging of Red-Shifted Proteorhodopsins: Toward Quantitation of the Membrane Potential. J Phys Chem Lett 2019; 10:4374-4381. [PMID: 31313926 DOI: 10.1021/acs.jpclett.9b01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Voltage imaging allows mapping of the membrane potential in living cells. Yet, current intensity-based imaging approaches are limited to relative membrane potential changes, missing important information conveyed by the absolute value of the membrane voltage. This challenge arises from various factors affecting the signal intensity, such as concentration, illumination intensity, and photobleaching. Here, we demonstrate electronic preresonance hyperspectral stimulated Raman scattering (EPR-hSRS) for spectroscopic detection of the membrane voltage using a near-infrared-absorbing microbial rhodopsin expressed in E. coli. This newly developed near-infrared active microbial rhodopsin enables electronic preresonance SRS imaging at high sensitivity. By spectral profiling, we identified voltage-sensitive SRS peaks in the fingerprint region in single E. coli cells. These spectral signatures offer a new approach for quantitation of the absolute membrane voltage in living cells.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Kai-Chih Huang
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Gaoxiang Mei
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physics , Boston University , Boston , Massachusetts 02215 , United States
| | - Cheng Zong
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Natalia Mamaeva
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physics , Boston University , Boston , Massachusetts 02215 , United States
| | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry , Leiden University , 2300 RA Leiden , The Netherlands
- Department of Biochemistry , Radboud University Medical School , 6500 HB Nijmegen , The Netherlands
| | - Kenneth J Rothschild
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physics , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physiology and Biophysics , Boston University School of Medicine , Boston , Massachusetts 02218 , United States
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
- Department of Physics , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
11
|
Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. J Phys Chem B 2019; 123:4242-4250. [PMID: 30998011 PMCID: PMC6526469 DOI: 10.1021/acs.jpcb.9b01136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Microbial rhodopsins
constitute a key protein family in optobiotechnological
applications such as optogenetics and voltage imaging. Spectral tuning
of rhodopsins into the deep-red and near-infrared spectral regions
is of great demand in such applications because more bathochromic
light into the near-infrared range penetrates deeper in living tissue.
Recently, retinal analogues have been successfully used in ion transporting
and fluorescent rhodopsins to achieve red-shifted absorption, activity,
and emission properties. Understanding their photochemical mechanism
is essential for further design of appropriate retinal analogues but
is yet only poorly understood for most retinal analogue pigments.
Here, we report the photoreaction dynamics of red-shifted analogue
pigments of the proton pump proteorhodopsin (PR) containing A2 (all-trans-3,4-dehydroretinal), MOA2 (all-trans-3-methoxy-3,4-dehydroretinal), or DMAR (all-trans-3-dimethylamino-16-nor-1,2,3,4-didehydroretinal), utilizing femto-
to submillisecond transient absorption spectroscopy. We found that
the A2 analogue photoisomerizes in 1.4, 3.0, and/or 13 ps upon 510
nm light illumination, which is comparable to the native retinal (A1)
in PR. On the other hand, the deprotonation of the A2 pigment Schiff
base was observed with a dominant time constant of 67 μs, which
is significantly slower than the A1 pigment. In the MOA2 pigment,
no isomerization or photoproduct formation was detected upon 520 nm
excitation, implying that all the excited molecules returned to the
initial ground state in 2.0 and 4.2 ps. The DMAR pigment showed very
slow excited state dynamics similar to the previously studied MMAR
pigment, but only very little photoproduct was formed. The low efficiency
of the photoproduct formation likely is the reason why DMAR analogue
pigments of PR showed very weak proton pumping activity.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Srividya Ganapathy
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands
| | - Sean Frehan
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Miroslav Kloz
- ELI-Beamlines , Institute of Physics , Na Slovance 2 , Praha 8 182 21 , Czech Republic
| | - Willem J de Grip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands.,Department of Biochemistry , Radboud University Medical Center , Nijmegen 6500 HB , The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| |
Collapse
|