1
|
Streltsova MA, Palamarchuk AI, Vavilova JD, Ustiuzhanina MO, Boyko AA, Velichinskii RA, Alekseeva NA, Grechikhina MV, Shustova OA, Sapozhnikov AM, Kovalenko EI. Methodological Approaches for Increasing the Retroviral Transduction Efficiency of Primary NK Cells. Curr Pharm Des 2024; 30:2947-2958. [PMID: 39136515 DOI: 10.2174/0113816128314633240724060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/13/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The growing attention to NK cells for cancer cell therapy is associated with the need to establish highly efficient protocols for their genetic modification, particularly by retroviral transduction. OBJECTIVE In this work, we have optimized several stages of the retroviral-based modification process, and determined the distribution of the amino acid transporter ASCT2 between NK cell subsets. METHODS Retroviral particles were produced using the Phoenix Ampho cell line transfected with the calcium phosphate method . We used RD114-based retroviral transduction for lymphocyte cell lines and primary NK cells. RESULTS We have determined the optimal time to collect the RD114-pseudotyped viral supernatants resulting in the titer of viral particles required for efficient NK cell modification to be between 48 and 72 hours. Retroviral modification by retronectin-based method did not alter NK cell functional activity and cell survival. We identified differences in the Multiplicity of Infection (MOI) among cell lines that were partially associated with the ASCT2 surface expression. Cells with higher ASCT2 levels were more susceptible to transduction with RD114-pseudotyped viral particles. Higher ASCT2 expression levels were revealed in activated CD57+ and KIR2DL2DL3+ NK cells compared to their negative counterparts. CONCLUSION Our findings provide a more nuanced understanding of NK cell transduction, offering valuable insights for improving therapeutic applications involving NK cell modification.
Collapse
Affiliation(s)
- Maria A Streltsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Anastasia I Palamarchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Julia D Vavilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Maria O Ustiuzhanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Anna A Boyko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Rodion A Velichinskii
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Nadezhda A Alekseeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Maria V Grechikhina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Olga A Shustova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Alexander M Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Elena I Kovalenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, St. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| |
Collapse
|
2
|
Bai Y, Wang L, Xu R, Cui Y. Mesenchymal stem cells with p38 mitogen-activated protein kinase interference ameliorate mouse ischemic stroke. Exp Biol Med (Maywood) 2023; 248:2481-2491. [PMID: 38158804 PMCID: PMC10903255 DOI: 10.1177/15353702231220663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in the treatment of ischemic stroke. However, factors such as high glucose, oxidative stress, and aging can lead to the reduced function of donor MSCs. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is associated with various functions, such as cell proliferation, apoptosis, senescence, differentiation, and paracrine secretion. This study examined the hypothesis that the downregulation of p38 MAPK expression in MSCs improves the prognosis of mice with ischemic stroke. Lentiviral vector-mediated short hairpin RNA (shRNA) was constructed to downregulate the expression level of p38 MAPK in mouse bone marrow-derived MSCs. The growth cycle, apoptosis, and senescence of MSCs after infection were examined. A mouse model of ischemic stroke was constructed. After MSC transplantation, the recovery of neurological function in the mice was evaluated. Lentivirus-mediated shRNA significantly downregulated the mRNA and protein expression levels of p38 MAPK. The senescence of MSCs in the p38 MAPK downregulation group was significantly reduced, but the growth cycle and apoptosis did not significantly change. Compared with the control group, the infarct volume was reduced, and the neurological function and the axonal remodeling were improved in mice with ischemic stroke after transplantation of MSCs with downregulated p38 MAPK. Immunohistochemistry confirmed that in the p38 MAPK downregulation group, apoptotic cells were reduced, and the number of neuronal precursors and the formation of white matter myelin were increased. In conclusion, downregulation of p38 MAPK expression in MSCs improves the therapeutic effect in mice with ischemic stroke, an effect that may be related to a reduction in MSC senescence. This method is expected to improve the efficacy of MSCs in patients, especially in patients with underlying diseases such as diabetes, thus providing a basis for clinical individualized treatment for cerebral infarction.
Collapse
Affiliation(s)
- Yingying Bai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Lishan Wang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Rong Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Ying Cui
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
3
|
Amadeo F, Hanson V, Murray P, Taylor A. DEAE-Dextran Enhances the Lentiviral Transduction of Primary Human Mesenchymal Stromal Cells from All Major Tissue Sources Without Affecting Their Proliferation and Phenotype. Mol Biotechnol 2023; 65:544-555. [PMID: 35999479 PMCID: PMC9974715 DOI: 10.1007/s12033-022-00549-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Genetic engineering of mesenchymal stromal cells (MSCs) is a tool widely used to explore MSC properties in vitro and in vivo. Lentiviral infection with the use of polycations as an adjuvant is a method that is commonly used to generate stably transduced cells. However, it is known that some polycations can negatively affect primary MSCs and to date, no study has explored the effect of different polycations on the transduction efficiency and properties of all main types of MSCs, namely those derived from umbilical cord, bone marrow and adipose tissue. Here we explore a range of polycations, using transduction protocols with and without spinoculation, to produce stably transduced MSCs from these three tissue sources. We identified that an overnight incubation with diethylaminoethyl-dextran (DEAE-Dextran) is the protocol associated with the best transduction efficiency without compromising the viability of the cells, and which worked consistently with lentiviral particles encoding for different transgenes. Transduced and sorted MSC populations revealed no significant changes in proliferation, morphology and expression of MSC markers compared to naïve MSCs. Following this study, we conclude that DEAE-Dextran is a polycation that can be successfully used to enhance the transduction of MSCs from all major tissue sources.
Collapse
Affiliation(s)
- Francesco Amadeo
- grid.436365.10000 0000 8685 6563Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK ,grid.10025.360000 0004 1936 8470Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
| | - Vivien Hanson
- grid.436365.10000 0000 8685 6563Cellular Therapies Laboratory, NHS Blood and Transplant, Liverpool, UK
| | - Patricia Murray
- grid.10025.360000 0004 1936 8470Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
CBX4 Regulates Replicative Senescence of WI-38 Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5503575. [PMID: 35251476 PMCID: PMC8890863 DOI: 10.1155/2022/5503575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is characterized by cell cycle arrest and senescence-associated secretory phenotypes. Cellular senescence can be caused by various stress stimuli such as DNA damage, oxidative stress, and telomere attrition and is related to several chronic diseases, including atherosclerosis, Alzheimer's disease, and osteoarthritis. Chromobox homolog 4 (CBX4) has been shown to alleviate cellular senescence in human mesenchymal stem cells and is considered a possible target for senomorphic treatment. Here, we explored whether CBX4 expression is associated with replicative senescence in WI-38 fibroblasts, a classic human senescence model system. We also examined whether and how regulation of CBX4 modifies the senescence phenotype and functions as an antisenescence target in WI-38. During the serial culture of the WI-38 primary fibroblast cell line to a senescent state, we found increased expression of senescence markers, including senescence β-galactosidase (SA-βgal) activity, protein expression of p16, p21, and DPP4, and decreased proliferation marker EdU; moreover, CBX4 protein expression declined. With knockdown of CBX4, SA-βgal activity and p16 protein expression increased, and EdU decreased. With the activation of CBX4, SA-βgal activity, p16, and DPP4 protein decreased. In addition, CBX4 knockdown increased, while CBX4 activation decreased, gene expression of both CDKN2A (encoding the p16 protein) and DPP4. Genes related to DNA damage and cell cycle pathways were regulated by CBX4. These results demonstrate that CBX4 can regulate replicative senescence in a manner consistent with a senomorphic agent.
Collapse
|
5
|
Guan Z, Chen S, Pan F, Fan L, Sun D. Effects of Gene Delivery Approaches on Differentiation Potential and Gene Function of Mesenchymal Stem Cells. IEEE Trans Biomed Eng 2021; 69:83-95. [PMID: 34101578 DOI: 10.1109/tbme.2021.3087129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Introduction of a gene to mesenchymal stem cells (MSCs) is a well-known strategy to purposely manipulate the cell fate and further enhance therapeutic performance in cell-based therapy. Viral and chemical approaches for gene delivery interfere with differentiation potential. Although microinjection as a physical delivery method is commonly used for transfection, its influence on MSC cell fate is not fully understood. The current study aimed to evaluate the effects of four nonviral gene delivery methods on stem cell multi-potency. The four delivery methods are robotic microinjection, polyethylenimine (PEI), cationic liposome (cLipo), and calcium phosphate nanoparticles (CaP). Among the four methods, microinjection has exhibited the highest transfection efficiency of ~60%, while the three others showed lower efficiency of 10-25%. Robotic microinjection preserved fibroblast-like cell morphology, stress fibre intactness, and mature focal adhesion complex, while PEI caused severe cytotoxicity. No marked differentiation bias was observed after microinjection and cLipo treatment. By contrast, CaP-treated MSCs exhibited excessive osteogenesis, while PEI-treated MSCs showed excessive adipogenesis. Robotic microinjection system was used to inject the CRISPR/Cas9-encoding plasmid to knock out PPAR gene in MSCs, and the robotic microinjection did not interfere with PPAR function in differentiation commitment. Meanwhile, the bias in osteo-adipogenic differentiation exhibited in CaP and PEI-treated MSCs after PPAR knockout via chemical carriers. Our results indicate that gene delivery vehicles variously disturb MSCs differentiation and interfere with exogenous gene function. Our findings further suggest that robotic microinjection offers a promise of generating genetically modified MSCs without disrupting stem cell multi-potency and therapeutic gene function.
Collapse
|
6
|
Aging of Bone Marrow Mesenchymal Stromal Cells: Hematopoiesis Disturbances and Potential Role in the Development of Hematologic Cancers. Cancers (Basel) 2020; 13:cancers13010068. [PMID: 33383723 PMCID: PMC7794884 DOI: 10.3390/cancers13010068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As for many other cancers, the risk of developing hematologic malignancies increases considerably as people age. In recent years, a growing number of studies have highlighted the influence of the aging microenvironment on hematopoiesis and tumor progression. Mesenchymal stromal cells are a major player in intercellular communication inside the bone marrow microenvironment involved in hematopoiesis support. With aging, their functions may be altered, leading to hematopoiesis disturbances which can lead to hematologic cancers. A good understanding of the mechanisms involved in mesenchymal stem cell aging and the consequences on hematopoiesis and tumor progression is therefore necessary for a better comprehension of hematologic malignancies and for the development of therapeutic approaches. Abstract Aging of bone marrow is a complex process that is involved in the development of many diseases, including hematologic cancers. The results obtained in this field of research, year after year, underline the important role of cross-talk between hematopoietic stem cells and their close environment. In bone marrow, mesenchymal stromal cells (MSCs) are a major player in cell-to-cell communication, presenting a wide range of functionalities, sometimes opposite, depending on the environmental conditions. Although these cells are actively studied for their therapeutic properties, their role in tumor progression remains unclear. One of the reasons for this is that the aging of MSCs has a direct impact on their behavior and on hematopoiesis. In addition, tumor progression is accompanied by dynamic remodeling of the bone marrow niche that may interfere with MSC functions. The present review presents the main features of MSC senescence in bone marrow and their implications in hematologic cancer progression.
Collapse
|
7
|
Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother 2020; 128:110276. [PMID: 32502836 DOI: 10.1016/j.biopha.2020.110276] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) have provided an efficient way to integrate our gene of interest into eukaryote cells. Human immunodeficiency virus (HIV)-derived LVs have been vastly studied to become an invaluable asset in gene delivery. This abled LVs to be used in both research laboratories and gene therapy. Pseudotyping HIV-1 based LVs, abled it to transduce different types of cells, especially hematopoietic stem cells. A wide range of tropism, plus to the ability to integrate genes into target cells, made LVs an armamentarium in gene therapy. The third and fourth generations of self-inactivating LVs are being used to achieve safe gene therapy. Not only advanced methods enabled the clinical-grade LV production on a large scale, but also considerably heightened transduction efficiency. One of which is microfluidic systems that revolutionized gene delivery approaches. Since gene therapy using LVs attracted lots of attention to itself, we provided a brief review of LV structure and life-cycle along with methods for improving both LV production and transduction. Also, we mentioned some of their utilization in immunotherapy and gene therapy.
Collapse
|
8
|
Vassilieva I, Kosheverova V, Vitte M, Kamentseva R, Shatrova A, Tsupkina N, Skvortsova E, Borodkina A, Tolkunova E, Nikolsky N, Burova E. Paracrine senescence of human endometrial mesenchymal stem cells: a role for the insulin-like growth factor binding protein 3. Aging (Albany NY) 2020; 12:1987-2004. [PMID: 31951594 PMCID: PMC7053595 DOI: 10.18632/aging.102737] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Stress-induced premature cell senescence is well recognized to be accompanied by emerging the senescence-associated secretory phenotype (SASP). Secreted SASP factors can promote the senescence of normal neighboring cells through autocrine/paracrine pathways and regulate the senescence response, as well. Regarding human endometrium-derived mesenchymal stem cells (MESCs), the SASP regulation mechanisms as well as paracrine activity of senescent cells have not been studied yet. Here, we examined the role of insulin-like growth factor binding protein 3 (IGFBP3) in the paracrine senescence induction in young MESCs. The H2O2-induced premature senescence of MESCs led to increased IGFBP3 in conditioned media (CM). The inhibitory analysis of both MAPK and PI3K signaling pathways showed that IGFBP3 releasing from senescent cells is mainly regulated by PI3K/Akt pathway activity. IGFBP3 appears to be an important senescence-mediating factor as its immunodepletion from the senescent CM weakened the pro-senescent effect of CM on young MESCs and promoted their growth. In contrast, young MESCs acquired the senescence phenotype in response to simultaneous addition of recombinant IGFBP3 (rIGFBP3). The mechanism of extracellular IGFBP3 internalization was also revealed. The present study is the first to demonstrate a significant role of extracellular IGFBP3 in paracrine senescence induction of young MESCs.
Collapse
Affiliation(s)
- Irina Vassilieva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Vera Kosheverova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Mikhail Vitte
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Rimma Kamentseva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alla Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natalia Tsupkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena Skvortsova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Aleksandra Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena Tolkunova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Nikolay Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Elena Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
9
|
Griukova A, Deryabin P, Shatrova A, Burova E, Severino V, Farina A, Nikolsky N, Borodkina A. Molecular basis of senescence transmitting in the population of human endometrial stromal cells. Aging (Albany NY) 2019; 11:9912-9931. [PMID: 31689238 PMCID: PMC6874437 DOI: 10.18632/aging.102441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022]
Abstract
Hormone-regulated proliferation and differentiation of endometrial stromal cells (ESCs) determine overall endometrial plasticity and receptivity to embryos. Previously we revealed that ESCs may undergo premature senescence, accompanied by proliferation loss and various intracellular alterations. Here we focused on whether and how senescence may be transmitted within the ESCs population. We revealed that senescent ESCs may induce paracrine senescence in young counterparts via cell contacts, secreted factors and extracellular vesicles. According to secretome-wide profiling we identified plasminogen activator inhibitor -1 (PAI-1) to be the most prominent protein secreted by senescent ESCs (data are available via ProteomeXchange with identifier PXD015742). By applying CRISPR/Cas9 techniques we disclosed that PAI-1 secreted by senescent ESCs may serve as the master-regulator of paracrine senescence progression within the ESCs population. Unraveled molecular basis of senescence transduction in the ESCs population may be further considered in terms of altered endometrial plasticity and sensitivity to invading embryo, thus contributing to the female infertility curing.
Collapse
Affiliation(s)
- Anastasiia Griukova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Petersburg 194064, Russia
| | - Pavel Deryabin
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Petersburg 194064, Russia
| | - Alla Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Petersburg 194064, Russia
| | - Elena Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Petersburg 194064, Russia
| | - Valeria Severino
- Department of Medicine, University Medical Center (CMU), Faculty of Medicine, Geneva University, Geneva CH-1211, Switzerland
| | - Annarita Farina
- Department of Medicine, University Medical Center (CMU), Faculty of Medicine, Geneva University, Geneva CH-1211, Switzerland
| | - Nikolay Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Petersburg 194064, Russia
| | - Aleksandra Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Petersburg 194064, Russia
| |
Collapse
|