1
|
Alvarado K, Tang WJ, Watson CJ, Ahmed AR, Gómez AE, Donaka R, Amemiya C, Karasik D, Hsu YH, Kwon RY. Loss of cped1 does not affect bone and lean tissue in zebrafish. JBMR Plus 2025; 9:ziae159. [PMID: 39776615 PMCID: PMC11701521 DOI: 10.1093/jbmrpl/ziae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Human genetic studies have nominated cadherin-like and PC-esterase domain-containing 1 (CPED1) as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of CPED1 in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of CPED1 in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of cped1 in zebrafish, an emerging model for bone and mineral research. We analyzed two different cped1 mutant lines and performed deep phenotyping to characterize more than 200 measures of adult vertebral, craniofacial, and lean tissue morphology. We also examined alternative splicing of zebrafish cped1 and gene expression in various cell/tissue types. Our studies fail to support an essential role of cped1 in adult zebrafish bone. Specifically, homozygous mutants for both cped1 mutant alleles, which are expected to result in loss-of-function and impact all cped1 isoforms, exhibited no significant differences in the measures examined when compared to their respective wildtype controls, suggesting that cped1 does not significantly contribute to these traits. We identified sequence differences in critical residues of the catalytic triad between the zebrafish and mouse orthologs of CPED1, suggesting that differences in key residues, as well as distinct alternative splicing, could underlie different functions of CPED1 orthologs in the two species. Our studies fail to support a requirement of cped1 in zebrafish bone and lean tissue, adding to evidence that variants at 7q31.31 can act independently of CPED1 to influence BMD and fracture risk.
Collapse
Affiliation(s)
- Kurtis Alvarado
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - W Joyce Tang
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Claire J Watson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Ali R Ahmed
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Arianna Ericka Gómez
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Rajashekar Donaka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 5290002, Israel
| | - Chris Amemiya
- Department of Molecular and Cell Biology and Quantitative and Systems Biology Program, University of California, Merced, CA 95343, United States
| | - David Karasik
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 5290002, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, United States
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, United States
| | - Ronald Young Kwon
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| |
Collapse
|
2
|
Alvarado K, Tang WJ, Watson CJ, Ahmed AR, Gomez AE, Donaka R, Amemiya C, Karasik D, Hsu YH, Kwon RY. Loss of cped1 does not affect bone and lean tissue in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.601974. [PMID: 39026892 PMCID: PMC11257572 DOI: 10.1101/2024.07.10.601974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Human genetic studies have nominated Cadherin-like and PC-esterase Domain-containing 1 (CPED1) as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of CPED1 in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of CPED1 in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of cped1 in zebrafish, an emerging model for bone and mineral research. We analyzed two different cped1 mutant lines and performed deep phenotyping to characterize more than 200 measures of adult vertebral, craniofacial, and lean tissue morphology. We also examined alternative splicing of zebrafish cped1 and gene expression in various cell/tissue types. Our studies fail to support an essential role of cped1 in adult zebrafish bone. Specifically, homozygous mutants for both cped1 mutant alleles, which are expected to result in loss-of-function and impact all cped1 isoforms, exhibited no significant differences in the measures examined when compared to their respective wildtype controls, suggesting that cped1 does not significantly contribute to these traits. We identified sequence differences in critical residues of the catalytic triad between the zebrafish and mouse orthologs of CPED1, suggesting that differences in key residues, as well as distinct alternative splicing, could underlie different functions of CPED1 orthologs in the two species. Our studies fail to support a requirement of cped1 in zebrafish bone and lean tissue, adding to evidence that variants at 7q31.31 can act independently of CPED1 to influence BMD and fracture risk.
Collapse
Affiliation(s)
- Kurtis Alvarado
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - W. Joyce Tang
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Claire J. Watson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ali R. Ahmed
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Arianna Ericka Gomez
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Chris Amemiya
- Department of Molecular and Cell Biology and Quantitative and Systems Biology Program, University of California, Merced, CA, USA
| | - David Karasik
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Ronald Young Kwon
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Nanjappa DP, De Saffel H, Kalladka K, Arjuna S, Babu N, Prasad K, Sips P, Chakraborty A. Poly (A)-specific ribonuclease deficiency impacts oogenesis in zebrafish. Sci Rep 2023; 13:10026. [PMID: 37340076 DOI: 10.1038/s41598-023-37226-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/18/2023] [Indexed: 06/22/2023] Open
Abstract
Poly (A)-specific ribonuclease (PARN) is the most important 3'-5'exonuclease involved in the process of deadenylation, the removal of poly (A) tails of mRNAs. Although PARN is primarily known for its role in mRNA stability, recent studies suggest several other functions of PARN including a role in telomere biology, non-coding RNA maturation, trimming of miRNAs, ribosome biogenesis and TP53 function. Moreover, PARN expression is de-regulated in many cancers, including solid tumours and hematopoietic malignancies. To better understand the in vivo role of PARN, we used a zebrafish model to study the physiological consequences of Parn loss-of-function. Exon 19 of the gene, which partially codes for the RNA binding domain of the protein, was targeted for CRISPR-Cas9-directed genome editing. Contrary to the expectations, no developmental defects were observed in the zebrafish with a parn nonsense mutation. Intriguingly, the parn null mutants were viable and fertile, but turned out to only develop into males. Histological analysis of the gonads in the mutants and their wild type siblings revealed a defective maturation of gonadal cells in the parn null mutants. The results of this study highlight yet another emerging function of Parn, i.e., its role in oogenesis.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Hanna De Saffel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Krithika Kalladka
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Srividya Arjuna
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Kishan Prasad
- Department of Pathology, KS Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
4
|
Hanot M, Raby L, Völkel P, Le Bourhis X, Angrand PO. The Contribution of the Zebrafish Model to the Understanding of Polycomb Repression in Vertebrates. Int J Mol Sci 2023; 24:ijms24032322. [PMID: 36768643 PMCID: PMC9916924 DOI: 10.3390/ijms24032322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Polycomb group (PcG) proteins are highly conserved proteins assembled into two major types of complexes, PRC1 and PRC2, involved in the epigenetic silencing of a wide range of gene expression programs regulating cell fate and tissue development. The crucial role of PRC1 and PRC2 in the fundamental cellular processes and their involvement in human pathologies such as cancer attracted intense attention over the last few decades. Here, we review recent advancements regarding PRC1 and PRC2 function using the zebrafish model. We point out that the unique characteristics of the zebrafish model provide an exceptional opportunity to increase our knowledge of the role of the PRC1 and PRC2 complexes in tissue development, in the maintenance of organ integrity and in pathology.
Collapse
Affiliation(s)
- Mariette Hanot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Ludivine Raby
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pamela Völkel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Xuefen Le Bourhis
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
5
|
Hickey GJM, Wike CL, Nie X, Guo Y, Tan M, Murphy PJ, Cairns BR. Establishment of developmental gene silencing by ordered polycomb complex recruitment in early zebrafish embryos. eLife 2022; 11:e67738. [PMID: 34982026 PMCID: PMC8769650 DOI: 10.7554/elife.67738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Vertebrate embryos achieve developmental competency during zygotic genome activation (ZGA) by establishing chromatin states that silence yet poise developmental genes for subsequent lineage-specific activation. Here, we reveal the order of chromatin states in establishing developmental gene poising in preZGA zebrafish embryos. Poising is established at promoters and enhancers that initially contain open/permissive chromatin with 'Placeholder' nucleosomes (bearing H2A.Z, H3K4me1, and H3K27ac), and DNA hypomethylation. Silencing is initiated by the recruitment of polycomb repressive complex 1 (PRC1), and H2Aub1 deposition by catalytic Rnf2 during preZGA and ZGA stages. During postZGA, H2Aub1 enables Aebp2-containing PRC2 recruitment and H3K27me3 deposition. Notably, preventing H2Aub1 (via Rnf2 inhibition) eliminates recruitment of Aebp2-PRC2 and H3K27me3, and elicits transcriptional upregulation of certain developmental genes during ZGA. However, upregulation is independent of H3K27me3 - establishing H2Aub1 as the critical silencing modification at ZGA. Taken together, we reveal the logic and mechanism for establishing poised/silent developmental genes in early vertebrate embryos.
Collapse
Affiliation(s)
- Graham JM Hickey
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Candice L Wike
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Xichen Nie
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Yixuan Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Mengyao Tan
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Patrick J Murphy
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
- Department of Biomedical Genetics, Wilmot Cancer Center, University of Rochester School of MedicineRochesterUnited States
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
6
|
Rouf MA, Wen L, Mahendra Y, Wang J, Zhang K, Liang S, Wang Y, Li Z, Wang Y, Wang G. The recent advances and future perspectives of genetic compensation studies in the zebrafish model. Genes Dis 2022; 10:468-479. [DOI: 10.1016/j.gendis.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
|
7
|
Vona B, Doll J, Hofrichter MAH, Haaf T, Varshney GK. Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hear Res 2020; 397:107906. [PMID: 32063424 PMCID: PMC7415493 DOI: 10.1016/j.heares.2020.107906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, advancements in high-throughput sequencing have greatly enhanced our knowledge of the mutational signatures responsible for hereditary hearing loss. In its present state, the field has a largely uncensored view of protein coding changes in a growing number of genes that have been associated with hereditary hearing loss, and many more that have been proposed as candidate genes. Sequencing data can now be generated using methods that have become widespread and affordable. The greatest hurdles facing the field concern functional validation of uncharacterized genes and rapid application to human diseases, including hearing and balance disorders. To date, over 30 hearing-related disease models exist in zebrafish. New genome editing technologies, including CRISPR/Cas9 will accelerate the functional validation of hearing loss genes and variants in zebrafish. Here, we discuss current progress in the field and recent advances in genome editing approaches.
Collapse
Affiliation(s)
- Barbara Vona
- Department of Otolaryngology--Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Julia Doll
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.
| |
Collapse
|
8
|
Genetic compensation in a stable slc25a46 mutant zebrafish: A case for using F0 CRISPR mutagenesis to study phenotypes caused by inherited disease. PLoS One 2020; 15:e0230566. [PMID: 32208444 PMCID: PMC7092968 DOI: 10.1371/journal.pone.0230566] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
A phenomenon of genetic compensation is commonly observed when an organism with a disease-bearing mutation shows incomplete penetrance of the disease phenotype. Such incomplete phenotypic penetrance, or genetic compensation, is more commonly found in stable knockout models, rather than transient knockdown models. As such, these incidents present a challenge for the disease modeling field, although a deeper understanding of genetic compensation may also hold the key for novel therapeutic interventions. In our study we created a knockout model of slc25a46 gene, which is a recently discovered important player in mitochondrial dynamics, and deleterious mutations in which are known to cause peripheral neuropathy, optic atrophy and cerebellar ataxia. We report a case of genetic compensation in a stable slc25a46 homozygous zebrafish mutant (hereafter referred as “mutant”), in contrast to a penetrant disease phenotype in the first generation (F0) slc25a46 mosaic mutant (hereafter referred as “crispant”), generated with CRISPR/Cas-9 technology. We show that the crispant phenotype is specific and rescuable. By performing mRNA sequencing, we define significant changes in slc25a46 mutant’s gene expression profile, which are largely absent in crispants. We find that among the most significantly altered mRNAs, anxa6 gene stands out as a functionally relevant player in mitochondrial dynamics. We also find that our genetic compensation case does not arise from mechanisms driven by mutant mRNA decay. Our study contributes to the growing evidence of the genetic compensation phenomenon and presents novel insights about Slc25a46 function. Furthermore, our study provides the evidence for the efficiency of F0 CRISPR screens for disease candidate genes, which may be used to advance the field of functional genetics.
Collapse
|