1
|
McCann HM, Meade CD, Banerjee B, Penev PI, Dean Williams L, Petrov AS. RiboVision2: A Web Server for Advanced Visualization of Ribosomal RNAs. J Mol Biol 2024; 436:168556. [PMID: 39237196 DOI: 10.1016/j.jmb.2024.168556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 09/07/2024]
Abstract
RiboVision2 is a web server designed to visualize phylogenetic, structural, and evolutionary properties of ribosomal RNAs simultaneously at the levels of primary, secondary, and three-dimensional structure and in the context of full ribosomal complexes. RiboVision2 instantly computes and displays a broad variety of data; it has no login requirements, is open-source, free for all users, and available at https://ribovision2.chemistry.gatech.edu.
Collapse
Affiliation(s)
- Holly M McCann
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Caeden D Meade
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Biswajit Banerjee
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Petar I Penev
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anton S Petrov
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
2
|
Mitra R, Cohen AS, Rohs R. RNAscape: geometric mapping and customizable visualization of RNA structure. Nucleic Acids Res 2024; 52:W354-W361. [PMID: 38630617 PMCID: PMC11223802 DOI: 10.1093/nar/gkae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Analyzing and visualizing the tertiary structure and complex interactions of RNA is essential for being able to mechanistically decipher their molecular functions in vivo. Secondary structure visualization software can portray many aspects of RNA; however, these layouts are often unable to preserve topological correspondence since they do not consider tertiary interactions between different regions of an RNA molecule. Likewise, quaternary interactions between two or more interacting RNA molecules are not considered in secondary structure visualization tools. The RNAscape webserver produces visualizations that can preserve topological correspondence while remaining both visually intuitive and structurally insightful. RNAscape achieves this by designing a mathematical structural mapping algorithm which prioritizes the helical segments, reflecting their tertiary organization. Non-helical segments are mapped in a way that minimizes structural clutter. RNAscape runs a plotting script that is designed to generate publication-quality images. RNAscape natively supports non-standard nucleotides, multiple base-pairing annotation styles and requires no programming experience. RNAscape can also be used to analyze RNA/DNA hybrid structures and DNA topologies, including G-quadruplexes. Users can upload their own three-dimensional structures or enter a Protein Data Bank (PDB) ID of an existing structure. The RNAscape webserver allows users to customize visualizations through various settings as desired. URL: https://rnascape.usc.edu/.
Collapse
Affiliation(s)
- Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ari S Cohen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Johnson PZ, Simon AE. RNAcanvas: interactive drawing and exploration of nucleic acid structures. Nucleic Acids Res 2023:7137443. [PMID: 37094080 DOI: 10.1093/nar/gkad302] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
Two-dimensional drawing of nucleic acid structures, particularly RNA structures, is fundamental to the communication of nucleic acids research. However, manually drawing structures is laborious and infeasible for structures thousands of nucleotides long. RNAcanvas automatically arranges residues into strictly shaped stems and loops while providing robust interactive editing features, including click-and-drag layout adjustment. Drawn elements are highly customizable in a point-and-click manner, including colours, fonts, size and shading, flexible numbering, and outlining of bases. Tertiary interactions can be drawn as draggable, curved lines. Leontis-Westhof notation for depicting non-canonical base-pairs is fully supported, as well as text labels for structural features (e.g. hairpins). RNAcanvas also has many unique features and performance optimizations for large structures that cannot be correctly predicted and require manual refinement based on the researcher's own analyses and expertise. To this end, RNAcanvas has point-and-click structure editing with real-time highlighting of complementary sequences and motif search functionality, novel features that greatly aid in the identification of putative long-range tertiary interactions, de novo analysis of local structures, and phylogenetic comparisons. For ease in producing publication quality figures, drawings can be exported in both SVG and PowerPoint formats. URL: https://rnacanvas.app.
Collapse
Affiliation(s)
- Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD20742, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD20742, USA
| |
Collapse
|
4
|
Winkler J, Urgese G, Ficarra E, Reinert K. LaRA 2: parallel and vectorized program for sequence-structure alignment of RNA sequences. BMC Bioinformatics 2022; 23:18. [PMID: 34991448 PMCID: PMC8734264 DOI: 10.1186/s12859-021-04532-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The function of non-coding RNA sequences is largely determined by their spatial conformation, namely the secondary structure of the molecule, formed by Watson-Crick interactions between nucleotides. Hence, modern RNA alignment algorithms routinely take structural information into account. In order to discover yet unknown RNA families and infer their possible functions, the structural alignment of RNAs is an essential task. This task demands a lot of computational resources, especially for aligning many long sequences, and it therefore requires efficient algorithms that utilize modern hardware when available. A subset of the secondary structures contains overlapping interactions (called pseudoknots), which add additional complexity to the problem and are often ignored in available software. RESULTS We present the SeqAn-based software LaRA 2 that is significantly faster than comparable software for accurate pairwise and multiple alignments of structured RNA sequences. In contrast to other programs our approach can handle arbitrary pseudoknots. As an improved re-implementation of the LaRA tool for structural alignments, LaRA 2 uses multi-threading and vectorization for parallel execution and a new heuristic for computing a lower boundary of the solution. Our algorithmic improvements yield a program that is up to 130 times faster than the previous version. CONCLUSIONS With LaRA 2 we provide a tool to analyse large sets of RNA secondary structures in relatively short time, based on structural alignment. The produced alignments can be used to derive structural motifs for the search in genomic databases.
Collapse
Affiliation(s)
- Jörg Winkler
- Department of Mathematics and Computer Science, Free University Berlin, Takustraße 9, 14195 Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Gianvito Urgese
- Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Elisa Ficarra
- Department of Control and Computer Science, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Knut Reinert
- Department of Mathematics and Computer Science, Free University Berlin, Takustraße 9, 14195 Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| |
Collapse
|
5
|
Das R, Watkins AM. RiboDraw: semiautomated two-dimensional drawing of RNA tertiary structure diagrams. NAR Genom Bioinform 2021; 3:lqab091. [PMID: 34661102 PMCID: PMC8515840 DOI: 10.1093/nargab/lqab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
Publishing, discussing, envisioning, modeling, designing and experimentally determining RNA three-dimensional (3D) structures involve preparation of two-dimensional (2D) drawings that depict critical functional features of the subject molecules, such as noncanonical base pairs and protein contacts. Here, we describe RiboDraw, new software for crafting these drawings. We illustrate the features of RiboDraw by applying it to several RNAs, including the Escherichia coli tRNA-Phe, the P4-P6 domain of Tetrahymena ribozyme, a -1 ribosomal frameshift stimulation element from beet western yellows virus and the 5' untranslated region of SARS-CoV-2. We show secondary structure diagrams of the 23S and 16S subunits of the E. coli ribosome that reflect noncanonical base pairs, ribosomal proteins and structural motifs, and that convey the relative positions of these critical features in 3D space. This software is a MATLAB package freely available at https://github.com/DasLab/RiboDraw.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Sweeney BA, Hoksza D, Nawrocki EP, Ribas CE, Madeira F, Cannone JJ, Gutell R, Maddala A, Meade CD, Williams LD, Petrov AS, Chan PP, Lowe TM, Finn RD, Petrov AI. R2DT is a framework for predicting and visualising RNA secondary structure using templates. Nat Commun 2021; 12:3494. [PMID: 34108470 PMCID: PMC8190129 DOI: 10.1038/s41467-021-23555-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Non-coding RNAs (ncRNA) are essential for all life, and their functions often depend on their secondary (2D) and tertiary structure. Despite the abundance of software for the visualisation of ncRNAs, few automatically generate consistent and recognisable 2D layouts, which makes it challenging for users to construct, compare and analyse structures. Here, we present R2DT, a method for predicting and visualising a wide range of RNA structures in standardised layouts. R2DT is based on a library of 3,647 templates representing the majority of known structured RNAs. R2DT has been applied to ncRNA sequences from the RNAcentral database and produced >13 million diagrams, creating the world's largest RNA 2D structure dataset. The software is amenable to community expansion, and is freely available at https://github.com/rnacentral/R2DT and a web server is found at https://rnacentral.org/r2dt .
Collapse
Affiliation(s)
- Blake A Sweeney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - David Hoksza
- Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Carlos Eduardo Ribas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Fábio Madeira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Jamie J Cannone
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Robin Gutell
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Aparna Maddala
- School of Chemistry and Biochemistry, Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Caeden D Meade
- School of Chemistry and Biochemistry, Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Patricia P Chan
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Anton I Petrov
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
| |
Collapse
|
7
|
Johnson PZ, Kasprzak WK, Shapiro BA, Simon AE. RNA2Drawer: geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences. RNA Biol 2019; 16:1667-1671. [PMID: 31441369 PMCID: PMC6844559 DOI: 10.1080/15476286.2019.1659081] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022] Open
Abstract
RNA structure prediction programs remain imperfect and many substructures are still identified by manual exploration, which is most efficiently conducted within an RNA structure drawing program. However, most nucleic acid structure drawing programs have limited capability for structure modification (i.e., breaking and forming new bonds between bases), often requiring that the structure notation be textually edited. RNA2Drawer was developed to allow for graphical structure editing while maintaining the geometry of a drawing (e.g., ellipsoid loops, stems with evenly stacked base pairs) throughout structural changes and manual adjustments to the layout by the user. In addition, the program allows for annotations such as colouring and circling of bases and drawing of tertiary interactions (e.g., pseudoknots). RNA2Drawer can also draw commonly desired elements such as an optionally flattened outermost loop and assists structure editing by automatically highlighting complementary subsequences, which facilitates the discovery of potentially new and alternative pairings, particularly tertiary pairings over long-distances, which are biologically critical in the genomes of many RNA viruses and cannot be accurately predicted by current structure prediction programs. Additionally, RNA2Drawer outputs drawings either as PNG files, or as PPTX and SVG files, such that every object of a drawing (e.g., bases, bonds) is an individual PPTX or SVG object, allowing for further manipulation in Microsoft PowerPoint or a vector graphics editor such as Adobe Illustrator. PowerPoint is the standard for presentations and is often used to create figures for publications, and RNA2Drawer is the first program to export drawings as PPTX files.
Collapse
Affiliation(s)
- Philip Z. Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bruce A. Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|