1
|
Singh A, Smith PF, Zheng Y. Targeting the Limbic System: Insights into Its Involvement in Tinnitus. Int J Mol Sci 2023; 24:9889. [PMID: 37373034 DOI: 10.3390/ijms24129889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Tinnitus is originally derived from the Latin verb tinnire, which means "to ring". Tinnitus, a complex disorder, is a result of sentient cognizance of a sound in the absence of an external auditory stimulus. It is reported in children, adults, and older populations. Patients suffering from tinnitus often present with hearing loss, anxiety, depression, and sleep disruption in addition to a hissing and ringing in the ear. Surgical interventions and many other forms of treatment have been only partially effective due to heterogeneity in tinnitus patients and a lack of understanding of the mechanisms of tinnitus. Although researchers across the globe have made significant progress in understanding the underlying mechanisms of tinnitus over the past few decades, tinnitus is still deemed to be a scientific enigma. This review summarises the role of the limbic system in tinnitus development and provides insight into the development of potential target-specific tinnitus therapies.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
2
|
Manukyan AL. Noise as a cause of neurodegenerative disorders: molecular and cellular mechanisms. Neurol Sci 2022; 43:2983-2993. [PMID: 35166975 DOI: 10.1007/s10072-022-05948-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
Noise as an environmental stressor becomes of increasing importance in our industrialized world, and especially traffic noise from the environment represents a potential novel neurodegenerative risk factor, as well as for hearing loss. A significant number of studies have been suggested that the overproduction of reactive oxygen species (ROS) has a complex role in stimulation of pathologic events. Experimental studies upon molecular pathways of traffic noise exposure proposed that it increased the level of stress hormones and mediated the inflammatory and oxidative stress (OS) pathways resulting in endothelial and neuronal dysfunction. Studies have shown that neurons are especially sensitive to OS due to high polyunsaturated fatty acids content in membranes, high oxygen uptake, and weak antioxidant defense. However, OS induces the necrotic and apoptotic cell deaths in the cochlea. Chronic noise is one of the many overall reasons of obtained sensorineural hearing loss which destroys cognitive functions in human and animals, as well as suppresses neurogenesis in the hippocampus. Nevertheless, behavioral disorders caused by noise are mainly accompanied with oxidative stress, but the clear molecular mechanism of neurodegeneration due to disruption of the pro- and antioxidant systems is still not fully understood. This paper aims to highlight the down-stream pathophysiology of noise-induced mental disorders, including hearing loss, annoyance, anxiety, depression, memory loss, and Alzheimer's disease, describing the underlying mechanisms of induction of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Ashkhen L Manukyan
- Department of Medical Chemistry, Yerevan State Medical University after M. Heratsi, Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
3
|
de Deus JL, Amorim MR, Ribeiro AB, Barcellos-Filho PCG, Ceballos CC, Branco LGS, Cunha AOS, Leão RM. Loss of Brain-Derived Neurotrophic Factor Mediates Inhibition of Hippocampal Long-Term Potentiation by High-Intensity Sound. Cell Mol Neurobiol 2021; 41:751-763. [PMID: 32445041 PMCID: PMC11448697 DOI: 10.1007/s10571-020-00881-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/16/2020] [Indexed: 01/15/2023]
Abstract
Exposure to noise produces cognitive and emotional disorders, and recent studies have shown that auditory stimulation or deprivation affects hippocampal function. Previously, we showed that exposure to high-intensity sound (110 dB, 1 min) strongly inhibits Schaffer-CA1 long-term potentiation (LTP). Here we investigated possible mechanisms involved in this effect. We found that exposure to 110 dB sound activates c-fos expression in hippocampal CA1 and CA3 neurons. Although sound stimulation did not affect glutamatergic or GABAergic neurotransmission in CA1, it did depress the level of brain-derived neurotrophic factor (BDNF), which is involved in promoting hippocampal synaptic plasticity. Moreover, perfusion of slices with BDNF rescued LTP in animals exposed to sound stimulation, whereas BDNF did not affect LTP in sham-stimulated rats. Furthermore, LM22A4, a TrkB receptor agonist, also rescued LTP from sound-stimulated animals. Our results indicate that depression of hippocampal BDNF mediates the inhibition of LTP produced by high-intensity sound stimulation.
Collapse
Affiliation(s)
- Júnia L de Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-904, Brazil
| | - Mateus R Amorim
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-904, Brazil
| | - Aline B Ribeiro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Procópio C G Barcellos-Filho
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - César C Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luiz Guilherme S Branco
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-904, Brazil
| | - Alexandra O S Cunha
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Ricardo M Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
4
|
Molina SJ, Buján GE, Guelman LR. Noise-induced hippocampal oxidative imbalance and aminoacidergic neurotransmitters alterations in developing male rats: Influence of enriched environment during adolescence. Dev Neurobiol 2021; 81:164-188. [PMID: 33386696 DOI: 10.1002/dneu.22806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
Living in big cities might involuntarily expose people to high levels of noise causing auditory and/or extra-auditory impairments, including adverse effects on central nervous system (CNS) areas such as the hippocampus. In particular, CNS development is a very complex process that can be altered by environmental stimuli. We have previously shown that noise exposure of developing rats can induce hippocampal-related behavioral alterations. However, noise-induced biochemical alterations had not been studied yet. Thus, the aim of this work was to assess whether early noise exposure can affect rat hippocampal oxidative state and aminoacidergic neurotransmission tone. Additionally, the effectiveness of an enriched environment (EE) as a neuroprotective strategy was evaluated. Male Wistar rats were exposed to different noise schemes at 7 or 15 days after birth. Upon weaning, some animals were transferred to an EE whereas others were kept in standard cages. Short- and long-term measurements were performed to evaluate reactive oxygen species, thioredoxins levels and catalase activity as indicators of hippocampal oxidative status as well as glutamic acid decarboxylase and a subtype of glutamate transporter to evaluate aminoacidergic neurotransmission tone. Results showed noise-induced changes in hippocampal oxidative state and aminoacidergic neurotransmission markers that lasted until adolescence and differed according to the scheme and the age of exposure. Finally, EE housing was effective in preventing some of these changes. These findings suggest that CNS development seems to be sensitive to the effects of stressors such as noise, as well as those of an environmental stimulation, favoring prompt and lasting molecular changes.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
5
|
Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Front Syst Neurosci 2020; 13:88. [PMID: 32038184 PMCID: PMC6992603 DOI: 10.3389/fnsys.2019.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Tinnitus is one of the most prevalent auditory disorders worldwide, manifesting in both chronic and acute forms. The pathology of tinnitus has been mechanistically linked to induction of harmful neural plasticity stemming from traumatic noise exposure, exposure to ototoxic medications, input deprivation from age-related hearing loss, and in response to injuries or disorders damaging the conductive apparatus of the ears, the cochlear hair cells, the ganglionic cells of the VIIIth cranial nerve, or neurons of the classical auditory pathway which link the cochlear nuclei through the inferior colliculi and medial geniculate nuclei to auditory cortices. Research attempting to more specifically characterize the neural plasticity occurring in tinnitus have used a wide range of techniques, experimental paradigms, and sampled at different windows of time to reach different conclusions about why and which specific brain regions are crucial in the induction or ongoing maintenance of tinnitus-related plasticity. Despite differences in experimental methodologies, evidence reveals similar findings that strongly suggest that immediate and prolonged activation of non-classical auditory structures (i.e., amygdala, hippocampus, and cingulate cortex) may contribute to the initiation and development of tinnitus in addition to the ongoing maintenance of this devastating condition. The overarching focus of this review, therefore, is to highlight findings from the field supporting the hypothesis that abnormal early activation of non-classical sensory limbic regions are involved in tinnitus induction, with activation of these regions continuing to occur at different temporal stages. Since initial/early stages of tinnitus are difficult to control and to quantify in human clinical populations, a number of different animal paradigms have been developed and assessed in experimental investigations. Reviews of traumatic noise exposure and ototoxic doses of sodium salicylate, the most prevalently used animal models to induce experimental tinnitus, indicate early limbic system plasticity (within hours, minutes, or days after initial insult), supports subsequent plasticity in other auditory regions, and contributes to the pathophysiology of tinnitus. Understanding this early plasticity presents additional opportunities for intervention to reduce or eliminate tinnitus from the human condition.
Collapse
Affiliation(s)
- Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lucien T. Thompson
- Department of Neurobiology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|