1
|
Askari S, Zomorodi AR, Aflakian F. Alternative treatment candidates to antibiotic therapy for bovine mastitis in the post-antibiotic era: a comprehensive review. Microb Pathog 2025; 205:107684. [PMID: 40348206 DOI: 10.1016/j.micpath.2025.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Mastitis, an inflammation of mammary tissue frequently associated with infection, is a prevalent disease among dairy animals. Bacterial intra-mammary infection is identified as a primary cause of bovine mastitis (BM). In dairy cattle, antimicrobials are used for mastitis treatment during the lactating phase and for dry cow therapy. Although self-curing can occur, the success of mastitis treatment depends on several factors, including the type of bacteria responsible for the infection, the effectiveness of the administered antibiotics, and the host's overall immune response. Moreover, the growing resistance of microorganisms to antibiotics has restricted the available treatment options for managing intramammary infections. In addition, the utilization of critically essential antimicrobials in animals raised for food production may elevate the risk of human infections that are challenging to treat. Therefore, it is crucial to have alternative treatments with equivalent or superior effectiveness as part of any stewardship program. These may include the application of nanotechnology, stem cell technology, photodynamic and laser radiation or the use of traditional herbal medical plants, nutraceuticals, antibacterial peptides, bacteriocins, antibodies therapy, bacteriophages, phage lysins, and probiotics as alternatives to antibiotics. This review aims to discuss the potential of vaccination as an indirect strategy, along with nanotechnology, probiotics, stem cell therapy, antimicrobial peptides, photodynamic therapy, laser irradiation, and antibody treatments as direct approaches. These approaches are examined as possible alternative therapeutic options to antibiotic treatment for BM.
Collapse
Affiliation(s)
- Sepideh Askari
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Committee of Medical Education Development, Education Development Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemical Engineering, Faculty of Advanced Technology, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
2
|
Chatterjee D, Sivashanmugam K. Immunomodulatory peptides: new therapeutic horizons for emerging and re-emerging infectious diseases. Front Microbiol 2024; 15:1505571. [PMID: 39760081 PMCID: PMC11695410 DOI: 10.3389/fmicb.2024.1505571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
The emergence and re-emergence of multi-drug-resistant (MDR) infectious diseases have once again posed a significant global health challenge, largely attributed to the development of bacterial resistance to conventional anti-microbial treatments. To mitigate the risk of drug resistance globally, both antibiotics and immunotherapy are essential. Antimicrobial peptides (AMPs), also referred to as host defense peptides (HDPs), present a promising therapeutic alternative for treating drug-resistant infections due to their various mechanisms of action, which encompass antimicrobial and immunomodulatory effects. Many eukaryotic organisms produce HDPs as a defense mechanism, for example Purothionin from Triticum aestivum plant, Defensins, Cathelicidins, and Histatins from humans and many such peptides are currently the focus of research because of their antibacterial, antiviral and anti-fungicidal properties. This article offers a comprehensive review of the immunomodulatory activities of HDPs derived from eukaryotic organisms including humans, plants, birds, amphibians, reptiles, and marine species along with their mechanisms of action and therapeutic benefits.
Collapse
|
3
|
Di Stasi A, Bozzer S, Pacor S, de Pascale L, Morici M, Favero L, Spazzapan M, Pegoraro S, Bulla R, Wilson DN, Macor P, Scocchi M, Mardirossian M. The proline-rich antimicrobial peptide B7-005: low bacterial resistance, safe for human cells and effective in zebrafish embryo bacteraemia model. Open Biol 2024; 14:240286. [PMID: 39626774 PMCID: PMC11614538 DOI: 10.1098/rsob.240286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/10/2024] [Indexed: 12/08/2024] Open
Abstract
Proline-rich antimicrobial peptides (PrAMPs) have gained attention due to their antimicrobial properties and low cytotoxicity. B7-005, a small optimized PrAMP, exhibits a broader spectrum of activity than native PrAMPs, due to an antimicrobial mechanism based on inhibiting prokaryotic protein synthesis and destabilizing bacterial membranes. However, the toxicity and the in vivo efficacy of B7-005 remain poorly understood, so in vitro and in vivo microbiology and toxicology experiments were used to assess its suitability as an anti-infective agent. The incidence of resistance towards B7-005 by E. coli was lower than for other PrAMPs and antibiotics; moreover, it maintained antimicrobial activity in the presence of human serum. B7-005 exerted its antimicrobial effect at a much lower concentration than those causing harmful effects on four different cell types, such as membrane permeabilization or non-lytic depolarization of mitochondria. The latter effect may be related to the inhibition of eukaryotic protein synthesis by B7-005 observed in vitro. In a zebrafish embryo model, B7-005 was well tolerated and reduced mortality from pre-existing E. coli bacteraemia. Overall, B7-005 was safe for human cells and effective against systemic infection in vivo, making it a promising lead for developing new antibiotics.
Collapse
Affiliation(s)
- Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Luigi de Pascale
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Lara Favero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
| | | | - Silvia Pegoraro
- Institute for Maternal and Child Health Irccs Burlo Garofolo, 34137 Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
4
|
Lima LF, Oliveira KBSD, Osiro KO, Cunha VA, Franco OL. Application of antimicrobial peptides in the poultry industry. Vet Microbiol 2024; 298:110267. [PMID: 39383680 DOI: 10.1016/j.vetmic.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Poultry meat production and exportation contribute significantly to the global economy. However, various infections affect poultry production and consequently affect the economy. Nowadays, antibiotics are widely used in infection treatment and prevention. Antibiotic overuse is problematic because may cause antimicrobial resistance, which can be transferred to humans directly or indirectly, affecting public health. In addition, since antibiotics for animal growth stimulation are banned, it is important to search for new molecules to overcome these difficulties. As an alternative, antimicrobial peptides (AMPs) can show immunomodulatory, antimicrobial, and growth stimulation, which makes these molecules interesting as alternatives to antibiotic use. Studying AMPs can provide new ideas for treating the most important infections that affect poultry. Besides, this can assist in reducing the resistance problem. This review aims to examine recent studies about AMPs used against pathogens that can affect the poultry industry.
Collapse
Affiliation(s)
- Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil
| | - Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil
| | - Karen Ofuji Osiro
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil
| | - Victor Albuquerque Cunha
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília 70790-160, Brazil; S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande 79117-900, Brazil; Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília (UnB), Brasília 70910-900, Brazil.
| |
Collapse
|
5
|
Raghavan S, Kim KS. Host immunomodulation strategies to combat pandemic-associated antimicrobial-resistant secondary bacterial infections. Int J Antimicrob Agents 2024; 64:107308. [PMID: 39168417 DOI: 10.1016/j.ijantimicag.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
The incidence of secondary bacterial infections has increased in recent decades owing to various viral pandemics. These infections further increase the morbidity and mortality rates associated with viral infections and remain a significant challenge in clinical practice. Intensive antibiotic therapy has mitigated the threat of such infections; however, overuse and misuse of antibiotics have resulted in poor outcomes, such as inducing the emergence of bacterial populations with antimicrobial resistance (AMR) and reducing the therapeutic options for this crisis. Several antibiotic substitutes have been suggested and employed; however, they have certain limitations and novel alternatives are urgently required. This review highlights host immunomodulation as a promising strategy against secondary bacterial infections to overcome AMR. The definition and risk factors of secondary bacterial infections, features and limitations of currently available therapeutic strategies, host immune responses, and future perspectives for treating such infections are discussed.
Collapse
Affiliation(s)
- Srimathi Raghavan
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea.
| |
Collapse
|
6
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Li H, Niu J, Wang X, Niu M, Liao C. The Contribution of Antimicrobial Peptides to Immune Cell Function: A Review of Recent Advances. Pharmaceutics 2023; 15:2278. [PMID: 37765247 PMCID: PMC10535326 DOI: 10.3390/pharmaceutics15092278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The development of novel antimicrobial agents to replace antibiotics has become urgent due to the emergence of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs), widely distributed in all kingdoms of life, present strong antimicrobial activity against a variety of bacteria, fungi, parasites, and viruses. The potential of AMPs as new alternatives to antibiotics has gradually attracted considerable interest. In addition, AMPs exhibit strong anticancer potential as well as anti-inflammatory and immunomodulatory activity. Many studies have provided evidence that AMPs can recruit and activate immune cells, controlling inflammation. This review highlights the scientific literature focusing on evidence for the anti-inflammatory mechanisms of different AMPs in immune cells, including macrophages, monocytes, lymphocytes, mast cells, dendritic cells, neutrophils, and eosinophils. A variety of immunomodulatory characteristics, including the abilities to activate and differentiate immune cells, change the content and expression of inflammatory mediators, and regulate specific cellular functions and inflammation-related signaling pathways, are summarized and discussed in detail. This comprehensive review contributes to a better understanding of the role of AMPs in the regulation of the immune system and provides a reference for the use of AMPs as novel anti-inflammatory drugs for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Junhui Niu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China;
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| |
Collapse
|
8
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
9
|
Shen S, Sun Y, Ren F, Blair JMA, Siasat P, Fan S, Hu J, He J. Characteristics of antimicrobial peptide OaBac5mini and its bactericidal mechanism against Escherichia coli. Front Vet Sci 2023; 10:1123054. [PMID: 36908510 PMCID: PMC9995905 DOI: 10.3389/fvets.2023.1123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Antimicrobial peptides (AMPs) play an important role in defending against the attack of pathogenic microorganisms. Among them, the proline-rich antibacterial peptides (PrAMPs) have been attracting close attention due to their simple structure, strong antibacterial activity, and low cell toxicity. OaBac5mini is an active fragment of the sheep-derived OaBac5 belonging to the PrAMPs family. Methods In this study, the antibacterial activity of OaBac5mini was investigated by testing the MICs against different stains of E. coli and S. aureus as well as the time-kill curve. The bactericidal mechanism was explored by determining the effect of OaBac5mini on the cell membrane. The stability and biosafety were also evaluated. Results The susceptibility test demonstrated that OaBac5mini showed potent antibacterial activity against the multidrug-resistant (MDR) E. coli isolates. It is noticeable that the absence of inner membrane protein SbmA in E. coli ATCC 25922 caused the MIC of OaBac5mini to increase 4-fold, implying OaBac5mini can enter into the cytoplasm via SbmA and plays its antibacterial activity. Moreover, the antibacterial activity of OaBac5mini against E. coli ATCC 25922 was not remarkably affected by the serum salts except for CaCl2 at a physiological concentration, pH, temperature, repeated freeze-thawing and proteases (trypsin < 20 μg/mL, pepsin or proteinase K). Time-kill curve analysis showed OaBac5mini at the concentration of 200 μg/mL (8 × MICs) could effectively kill E. coli ATCC 25922 after co-incubation for 12 h. In addition, OaBac5mini was not hemolytic against rabbit red blood cells and also was not cytotoxic to porcine small intestinal epithelial cells (IPEC-J2). Bioinformatic analysis indicated that OaBac5mini is a linear peptide with 8 net positive charges. Furthermore, OaBac5mini significantly increased the outer membrane permeability and impaired the inner membrane integrity and ultrastructure of E. coli ATCC25922. Conclusion OaBac5mini is a stable and potent PrAMP that kills E. coli by two different modes of action - inhibiting intracellular target(s) and damaging cell membrane.
Collapse
Affiliation(s)
- Shanshan Shen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Fei Ren
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Pauline Siasat
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Shuaiqi Fan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Junping He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
10
|
Wu D, Fu L, Wen W, Dong N. The dual antimicrobial and immunomodulatory roles of host defense peptides and their applications in animal production. J Anim Sci Biotechnol 2022; 13:141. [PMID: 36474280 PMCID: PMC9724304 DOI: 10.1186/s40104-022-00796-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022] Open
Abstract
Host defense peptides (HDPs) are small molecules with broad-spectrum antimicrobial activities against infectious bacteria, viruses, and fungi. Increasing evidence suggests that HDPs can also indirectly protect hosts by modulating their immune responses. Due to these dual roles, HDPs have been considered one of the most promising antibiotic substitutes to improve growth performance, intestinal health, and immunity in farm animals. This review describes the antimicrobial and immunomodulatory roles of host defense peptides and their recent applications in animal production.
Collapse
Affiliation(s)
- Di Wu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Linglong Fu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Weizhang Wen
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Na Dong
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
11
|
Panteleev PV, Safronova VN, Kruglikov RN, Bolosov IA, Bogdanov IV, Ovchinnikova TV. A Novel Proline-Rich Cathelicidin from the Alpaca Vicugna pacos with Potency to Combat Antibiotic-Resistant Bacteria: Mechanism of Action and the Functional Role of the C-Terminal Region. MEMBRANES 2022; 12:membranes12050515. [PMID: 35629841 PMCID: PMC9146984 DOI: 10.3390/membranes12050515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics.
Collapse
|
12
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
13
|
Sun ZG, Zhao LH, Yeh SM, Li ZN, Ming X. Research Development, Optimization and Modifications of Anti-cancer Peptides. Mini Rev Med Chem 2021; 21:58-68. [PMID: 32767954 DOI: 10.2174/1389557520666200729163146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Anti-cancer peptides play an important role in the area of cancer inhibition. A variety of anti- cancer peptides have emerged through the extraction and structural modification of peptides from biological tissues. This review provides the research background of anti-cancer peptides, the introduction of the mechanism of anti-cancer peptides for inhibition of cancers, the discovery and development along with optimization and modifications of these peptides in the clinical application. In conclusion, it can be said that anti-cancer peptides will play a major role in the future oncologic clinic.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China
| | - Liang-Hui Zhao
- Weifang Medical University, No. 7166 Baotong West Street, Weifang 261000, China
| | - Stacy Mary Yeh
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston- Salem, NC 27101, United States
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston- Salem, NC 27101, United States
| |
Collapse
|
14
|
Roque-Borda CA, Silva HRL, Crusca Junior E, Serafim JA, Meneguin AB, Chorilli M, Macedo WC, Teixeira SR, Guastalli EAL, Soares NM, Blair JMA, Pikramenou Z, Vicente EF. Alginate-based microparticles coated with HPMCP/AS cellulose-derivatives enable the Ctx(Ile 21)-Ha antimicrobial peptide application as a feed additive. Int J Biol Macromol 2021; 183:1236-1247. [PMID: 33965488 DOI: 10.1016/j.ijbiomac.2021.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/20/2022]
Abstract
Microencapsulation is a potential biotechnological tool, which can overcome antimicrobial peptides (AMP) instabilities and reduce toxic side effects. Thus, this study evaluates the antibacterial activities of the Ctx(Ile21)-Ha AMP against multidrug-resistant (MDR) and non-resistant bacteria and develop and characterize peptide-loaded microparticles coated with the enteric polymers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose phthalate (HPMCP). Ctx(Ile21)-Ha was obtained by solid phase peptide synthesis (SPPS) method, purified and characterized by HPLC and Mass Spectrometry. The peptide exhibited potent antibiotic activities against Salmonella enteritidis, Salmonella typhimurium, Pseudomonas aeruginosa (MDR), Acinetobacter baumannii (MDR), and Staphylococcus aureus (MDR). Ctx(Ile21)-Ha microencapsulation was performed by ionic gelation with high efficiency, maintaining the physical-chemical stability. Ctx(Ile21)-Ha coated-microparticles were characterized by DSC, TGA, FTIR-Raman, XRD and SEM. Hemolytic activity assay demonstrated that hemolysis was decreased up to 95% compared to single molecule. In addition, in vitro release control profile simulating different portions of gastrointestinal tract was performed and showed the microcapsules' ability to protect the peptide and release it in the intestine, aiming pathogen's location, mainly by Salmonella sp. Therefore, use of microencapsulated Ctx(Ile21)-Ha can be allowed as an antimicrobial controller in monogastric animal production as an oral feed additive (antimicrobial controller), being a valuable option for molecules with low therapeutic indexes or high hemolytic rates.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo CEP 14884-900, Brazil
| | - Hanyeny Raiely Leite Silva
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo CEP 14884-900, Brazil
| | - Edson Crusca Junior
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo CEP 14800-900, Brazil
| | - Jéssica Aparecida Serafim
- São Paulo State University (Unesp), School of Sciences and Engineering, Tupã, São Paulo CEP 17602-496, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo CEP 14801-902, Brazil
| | - Marlus Chorilli
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo CEP 14801-902, Brazil
| | - Wagner Costa Macedo
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, São Paulo CEP 19060-900, Brazil
| | - Silvio Rainho Teixeira
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, São Paulo CEP 19060-900, Brazil
| | | | - Nilce Maria Soares
- Poultry Health Specialized Laboratory, Biological Institute, Bastos, São Paulo CEP 17690000, Brazil
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Eduardo Festozo Vicente
- São Paulo State University (Unesp), School of Sciences and Engineering, Tupã, São Paulo CEP 17602-496, Brazil.
| |
Collapse
|
15
|
The Antimicrobial Peptide, Bactenecin 5, Supports Cell-Mediated but Not Humoral Immunity in the Context of a Mycobacterial Antigen Vaccine Model. Antibiotics (Basel) 2020; 9:antibiotics9120926. [PMID: 33352656 PMCID: PMC7766334 DOI: 10.3390/antibiotics9120926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
Bactenecin (Bac) 5 is a bovine antimicrobial peptide (AMP) capable of killing some species of bacteria through the inhibition of protein synthesis. Bac5 and other AMPs have also been shown to have chemotactic properties and can induce inflammatory cytokine expression by innate immune cells. Recently, AMPs have begun to be investigated for their potential use as novel vaccine adjuvants. In the current work, we characterise the functionality of Bac5 in vitro using murine macrophage-like cells, ex vivo using human tonsil tissue and in vivo using a murine model of vaccination. We report the effects of the peptide in isolation and in the context of co-presentation with mycobacterial antigen and whole, inert Bacillus subtilis spore antigens. We find that Bac5 can trigger the release of nitric oxide from murine macrophages and upregulate surface marker expression including CD86, MHC-I and MHC-II, in the absence of additional agonists. When coupled with mycobacterial Ag85 and B. subtilis spores, Bac5 also enhanced IFNγ secretion. We provide evidence that B. subtilis spores, but not the Bac5 peptide, act as strong adjuvants in promoting antigen-specific immunoglobulin production in Ag85B-vaccinated mice. Our findings suggest that Bac5 is an important regulator of the early cell-mediated host immune response.
Collapse
|
16
|
Kopeikin PM, Zharkova MS, Kolobov AA, Smirnova MP, Sukhareva MS, Umnyakova ES, Kokryakov VN, Orlov DS, Milman BL, Balandin SV, Panteleev PV, Ovchinnikova TV, Komlev AS, Tossi A, Shamova OV. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Front Cell Infect Microbiol 2020; 10:552905. [PMID: 33194795 PMCID: PMC7604311 DOI: 10.3389/fcimb.2020.552905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023] Open
Abstract
Proline-rich antimicrobial peptides (PR-AMPs) having a potent antimicrobial activity predominantly toward Gram-negative bacteria and negligible toxicity toward host cells, are attracting attention as new templates for developing antibiotic drugs. We have previously isolated and characterized several bactenecins that are promising in this respect, from the leukocytes of the domestic goat Capra hircus: ChBac5, miniChBac7.5N-α, and -β, as well as ChBac3.4. Unlike the others, ChBac3.4 shows a somewhat unusual pattern of activities for a mammalian PR-AMP: it is more active against bacterial membranes as well as tumor and, to the lesser extent, normal cells. Here we describe a SAR study of ChBac3.4 (RFRLPFRRPPIRIHPPPFYPPFRRFL-NH2) which elucidates its peculiarities and evaluates its potential as a lead for antimicrobial or anticancer drugs based on this peptide. A set of designed structural analogues of ChBac3.4 was explored for antibacterial activity toward drug-resistant clinical isolates and antitumor properties. The N-terminal region was found to be important for the antimicrobial action, but not responsible for the toxicity toward mammalian cells. A shortened variant with the best selectivity index toward bacteria demonstrated a pronounced synergy in combination with antibiotics against Gram-negative strains, albeit with a somewhat reduced ability to inhibit biofilm formation compared to native peptide. C-terminal amidation was examined for some analogues, which did not affect antimicrobial activity, but somewhat altered the cytotoxicity toward host cells. Interestingly, non-amidated peptides showed a slight delay in their impact on bacterial membrane integrity. Peptides with enhanced hydrophobicity showed increased toxicity, but in most cases their selectivity toward tumor cells also improved. While most analogues lacked hemolytic properties, a ChBac3.4 variant with two additional tryptophan residues demonstrated an appreciable activity toward human erythrocytes. The variant demonstrating the best tumor/nontumor cell selectivity was found to more actively initiate apoptosis in target cells, though its action was slower than that of the native ChBac3.4. Its antitumor effectiveness was successfully verified in vivo in a murine Ehrlich ascites carcinoma model. The obtained results demonstrate the potential of structural modification to manage caprine bactenecins’ selectivity and activity spectrum and confirm that they are promising prototypes for antimicrobial and anticancer drugs design.
Collapse
Affiliation(s)
- Pavel M Kopeikin
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Maria S Zharkova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander A Kolobov
- Laboratory of Peptide Chemistry, State Research Institute of Highly Pure Biopreparations, Saint Petersburg, Russia
| | - Maria P Smirnova
- Laboratory of Peptide Chemistry, State Research Institute of Highly Pure Biopreparations, Saint Petersburg, Russia
| | - Maria S Sukhareva
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina S Umnyakova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Vladimir N Kokryakov
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Dmitriy S Orlov
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Boris L Milman
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Sergey V Balandin
- Science-Educational Center, M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Pavel V Panteleev
- Science-Educational Center, M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Ovchinnikova
- Science-Educational Center, M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksey S Komlev
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Olga V Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
17
|
A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa. Sci Rep 2020; 10:9117. [PMID: 32499514 PMCID: PMC7272617 DOI: 10.1038/s41598-020-65688-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to classical antibiotics for the treatment of drug-resistant infections. Due to their versatility and unlimited sequence space, AMPs can be rationally designed by modulating physicochemical determinants to favor desired biological parameters and turned into novel therapeutics. In this study, we utilized key structural and physicochemical parameters, in combination with rational engineering, to design novel short α-helical hybrid peptides inspired by the well-known natural peptides, cathelicidin and aurein. By comparing homologous sequences and abstracting the conserved residue type, sequence templates of cathelicidin (P0) and aurein (A0) were obtained. Two peptide derivatives, P7 and A3, were generated by amino acid substitution based on their residue composition and distribution. In order to enhance antimicrobial activity, a hybrid analog of P7A3 was designed. The results demonstrated that P7A3 had higher antibacterial activity than the parental peptides with unexpectedly high hemolytic activity. Strikingly, C-terminal truncation of hybrid peptides containing only the α-helical segment (PA-18) and shorter derivatives confer potent antimicrobial activity with reduced hemolytic activity in a length‐dependent manner. Among all, PA-13, showed remarkable broad-spectrum antibacterial activity, especially against Pseudomonas aeruginosa with no toxicity. PA-13 maintained antimicrobial activity in the presence of physiological salts and displayed rapid binding and penetration activity which resulted in membrane depolarization and permeabilization. Moreover, PA-13 showed an anti-inflammatory response via lipopolysaccharide (LPS) neutralization with dose-dependent, inhibiting, LPS-mediated Toll-like receptor activation. This study revealed the therapeutic potency of a novel hybrid peptide, and supports the use of rational design in development of new antibacterial agents.
Collapse
|
18
|
Yang L, Sun Y, Xu Y, Hang B, Wang L, Zhen K, Hu B, Chen Y, Xia X, Hu J. Antibacterial Peptide BSN-37 Kills Extra- and Intra-Cellular Salmonella enterica Serovar Typhimurium by a Nonlytic Mode of Action. Front Microbiol 2020; 11:174. [PMID: 32117178 PMCID: PMC7019029 DOI: 10.3389/fmicb.2020.00174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/24/2020] [Indexed: 01/08/2023] Open
Abstract
The increasing rates of resistance to traditional anti-Salmonella agents have made the treatment of invasive salmonellosis more problematic, which necessitates the search for new antimicrobial compounds. In this study, the action mode of BSN-37, a novel antibacterial peptide (AMP) from bovine spleen neutrophils, was investigated against Salmonella enterica serovar Typhimurium (S. Typhimurium). Minimum inhibitory concentrations (MICs) and time-kill kinetics of BSN-37 were determined. The cell membrane changes of S. Typhimurium CVCC541 (ST) treated with BSN-37 were investigated by testing the fluorescence intensity of membrane probes and the release of cytoplasmic β-galactosidase activity. Likewise, cell morphological and ultrastructural changes were also observed using scanning and transmission electron microscopes. Furthermore, the cytotoxicity of BSN-37 was detected by a CCK-8 kit and real-time cell assay. The proliferation inhibition of BSN-37 against intracellular S. Typhimurium was performed in Madin-Darby canine kidney (MDCK) cells. The results demonstrated that BSN-37 exhibited strong antibacterial activity against ST (MICs, 16.67 μg/ml), which was not remarkably affected by the serum salts at a physiological concentration. However, the presence of CaCl2 led to an increase in MIC of BSN-37 by about 4-fold compared to that of ST. BSN-37 at the concentration of 100 μg/ml could completely kill ST after co-incubation for 6 h. Likewise, BSN-37 at different concentrations (50, 100, and 200 μg/ml) could increase the outer membrane permeability of ST but not impair its inner membrane integrity. Moreover, no broken and ruptured cells were found in the figures of scanning and transmission electron microscopes. These results demonstrate that BSN-37 exerts its antibacterial activity against S. Typhimurium by a non-lytic mode of action. Importantly, BSN-37 had no toxicity to the tested eukaryotic cells, even at a concentration of 800 μg/ml. BSN-37 could significantly inhibit the proliferation of intracellular S. Typhimurium.
Collapse
Affiliation(s)
- Lei Yang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ke Zhen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Bing Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanan Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
19
|
Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. Int J Mol Sci 2019; 20:ijms20194877. [PMID: 31581426 PMCID: PMC6801614 DOI: 10.3390/ijms20194877] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 11/28/2022] Open
Abstract
The advent of multidrug resistance among pathogenic bacteria has attracted great attention worldwide. As a response to this growing challenge, diverse studies have focused on the development of novel anti-infective therapies, including antimicrobial peptides (AMPs). The biological properties of this class of antimicrobials have been thoroughly investigated, and membranolytic activities are the most reported mechanisms by which AMPs kill bacteria. Nevertheless, an increasing number of works have pointed to a different direction, in which AMPs are seen to be capable of displaying non-lytic modes of action by internalizing bacterial cells. In this context, this review focused on the description of the in vitro and in vivo antibacterial and antibiofilm activities of non-lytic AMPs, including indolicidin, buforin II PR-39, bactenecins, apidaecin, and drosocin, also shedding light on how AMPs interact with and further translocate through bacterial membranes to act on intracellular targets, including DNA, RNA, cell wall and protein synthesis.
Collapse
|