1
|
de Salazar L, Segarra I, López-Román FJ, Torregrosa-García A, Pérez-Piñero S, Ávila-Gandía V. Increased Bioavailability of β-Alanine by a Novel Controlled-Release Powder Blend Compared to a Slow-Release Tablet. Pharmaceutics 2021; 13:1517. [PMID: 34575593 PMCID: PMC8467909 DOI: 10.3390/pharmaceutics13091517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND β-Alanine is a sport supplement with increasing popularity due to its consistent ability to improve physical performance, with the downside of requiring several weeks of supplementation as imposed to the maximum daily and single dose tolerated without side effects (i.e., paresthesia). To date, the only alternative to overcome this problem has been use of a sustained-release tablet, while powders are the most commonly used format to deliver several grams of amino acids in a single dose. In this study we assessed the bioavailability, pharmacokinetics and paresthesia effect of β-alanine after administration in a novel controlled-released powder blend (test) versus a sustained-release tablet (reference). METHODS Twelve subjects (25.6 ± 3.2 y, 50% female) participated in a randomized, single-blind, crossover study. Each participant was administered orally the test (β-alanine 8 g, l-histidine 300 mg, carnosine 100 mg) or the reference product (10 tablets to reach β-alanine 8 g, Zinc 20 mg) with a 1-week washout period. β-Alanine plasma concentrations (0-8 h) were determined by LC-MS/MS and model-independent pharmacokinetic analysis was carried out. Paresthesia intensity was evaluated using a Visual Analog Score (VAS) and the categorical Intensity Sensory Score (ISS). RESULTS The CMAX and AUC0→∞ increased 1.6- and 2.1-fold (both p < 0.001) in the test product, respectively, which yielded 2.1-fold higher bioavailability; Ka decreased in the test (0.0199 ± 0.0107 min-1) versus the reference (0.0299 ± 0.0121 min-1) product (p = 0.0834) as well as V/F and Cl/F (both p < 0.001); MRT0→last increased in the test (143 ± 19 min) versus reference (128 ± 16 min) formulation (p = 0.0449); t1/2 remained similar (test: 63.5 ± 8.7 min, reference: 68.9 ± 9.8 min). Paresthesia EMAX increased 1.7-fold using the VAS (p = 0.086) and the ISS (p = 0.009). AUEC increased 1.9-fold with the VAS (p = 0.107) and the ISS (p = 0.019) reflecting scale intrinsic differences. Pharmacokinetic-pharmacodynamic analysis showed a clockwise hysteresis loop without prediction ability between CMAX, AUC0→∞ and EMAX or AUEC. No side effects were reported (except paresthesia). CONCLUSIONS The novel controlled-release powder blend shows 100% higher bioavailability of β-alanine, opening a new paradigm that shifts from chronic to short or mid-term supplementation strategies to increase carnosine stores in sports nutrition.
Collapse
Affiliation(s)
- Lydia de Salazar
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| | - Ignacio Segarra
- Department of Pharmacy, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain;
- Pharmacokinetics, Patient Care and Translational Bioethics Research Group, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain
| | - Francisco Javier López-Román
- Health Sciences Department, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Antonio Torregrosa-García
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
- Health Sciences PhD Program, Campus de los Jerónimos N° 135, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Murcia, Spain
| | - Silvia Pérez-Piñero
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| | - Vicente Ávila-Gandía
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| |
Collapse
|
2
|
Gonçalves LDS, Kratz C, Santos L, Carvalho VH, Sales LP, Nemezio K, Longobardi I, Riani LA, Lima MMDO, Saito T, Fernandes AL, Rodrigues J, James RM, Sale C, Gualano B, Geloneze B, de Medeiros MHG, Artioli GG. Insulin does not stimulate β-alanine transport into human skeletal muscle. Am J Physiol Cell Physiol 2020; 318:C777-C786. [DOI: 10.1152/ajpcell.00550.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test whether high circulating insulin concentrations influence the transport of β-alanine into skeletal muscle at either saturating or subsaturating β-alanine concentrations, we conducted two experiments whereby β-alanine and insulin concentrations were controlled. In experiment 1, 12 men received supraphysiological amounts of β-alanine intravenously (0.11 g·kg−1·min−1for 150 min), with or without insulin infusion. β-Alanine and carnosine were measured in muscle before and 30 min after infusion. Blood samples were taken throughout the infusion protocol for plasma insulin and β-alanine analyses. β-Alanine content in 24-h urine was assessed. In experiment 2, six men ingested typical doses of β-alanine (10 mg/kg) before insulin infusion or no infusion. β-Alanine was assessed in muscle before and 120 min following ingestion. In experiment 1, no differences between conditions were shown for plasma β-alanine, muscle β-alanine, muscle carnosine and urinary β-alanine concentrations (all P > 0.05). In experiment 2, no differences between conditions were shown for plasma β-alanine or muscle β-alanine concentrations (all P > 0.05). Hyperinsulinemia did not increase β-alanine uptake by skeletal muscle cells, neither when substrate concentrations exceed the Vmaxof β-alanine transporter TauT nor when it was below saturation. These results suggest that increasing insulin concentration is not necessary to maximize β-alanine transport into muscle following β-alanine intake.
Collapse
Affiliation(s)
- Lívia de Souza Gonçalves
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Kratz
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Lívia Santos
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | | | - Lucas Peixoto Sales
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Kleiner Nemezio
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Igor Longobardi
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Augusto Riani
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Miranda de Oliveira Lima
- Laboratory of Investigation in Metabolism and Diabetes (LIMED)/Gastrocentro Departamento de Cirurgia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Tiemi Saito
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Alan Lins Fernandes
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Joice Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ruth Margaret James
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Geloneze
- Laboratory of Investigation in Metabolism and Diabetes (LIMED)/Gastrocentro Departamento de Cirurgia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | | | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group; School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|