1
|
Zamanzadeh M, Pourhedayat A, Bakouie F, Hadaeghi F. Exploring potential ADHD biomarkers through advanced machine learning: An examination of audiovisual integration networks. Comput Biol Med 2024; 183:109240. [PMID: 39442439 DOI: 10.1016/j.compbiomed.2024.109240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition marked by inattention and impulsivity, linked to disruptions in functional brain connectivity and structural alterations in large-scale brain networks. Although sensory pathway anomalies have been implicated in ADHD, the exploration of sensory integration regions remains limited. In this study, we adopted an exploratory approach to investigate the connectivity profile of auditory-visual integration networks (AVIN) in children with ADHD and neurotypical controls using the ADHD-200 rs-fMRI dataset. We expanded our exploration beyond network-based statistics (NBS) by extracting a diverse range of graph theoretical features. These features formed the basis for applying machine learning (ML) techniques to discern distinguishing patterns between the control group and children with ADHD. To address class imbalance and sample heterogeneity, we employed ensemble learning models, including balanced random forest (BRF), XGBoost, and EasyEnsemble classifier (EEC). Our findings revealed significant differences in AVIN between ADHD individuals and neurotypical controls, enabling automated diagnosis with moderate accuracy (74.30%). Notably, the EEC model demonstrated balanced sensitivity and specificity metrics, crucial for diagnostic applications, offering valuable insights for potential clinical use. These results contribute to understanding ADHD's neural underpinnings and highlight the diagnostic potential of AVIN measures. However, the exploratory nature of this study underscores the need for future research to confirm and refine these findings with specific hypotheses and rigorous statistical controls.
Collapse
Affiliation(s)
- Mohammad Zamanzadeh
- Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Warandelaan 2, Tilburg, 5037 AB, The Netherlands
| | - Abbas Pourhedayat
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Daneshjou Blvd., Tehran, 19839 69411, Iran
| | - Fatemeh Bakouie
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Daneshjou Blvd., Tehran, 19839 69411, Iran
| | - Fatemeh Hadaeghi
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, Hamburg, 20246, Germany.
| |
Collapse
|
2
|
Huang J, Wang A, Zhang M. The audiovisual competition effect induced by temporal asynchronous encoding weakened the visual dominance in working memory retrieval. Memory 2024; 32:1069-1082. [PMID: 39067050 DOI: 10.1080/09658211.2024.2381782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Converging evidence suggests a facilitation effect of multisensory interactions on memory performance, reflected in higher accuracy or faster response time under a bimodal encoding condition than a unimodal condition. However, relatively little attention has been given to the effect of multisensory competition on memory. The present study adopted an adaptive staircase test to measure the point of subjective simultaneity (PSS), combined with a delayed matched-to-sample (DMS) task to probe the effect of audiovisual competition during the encoding stage on subsequent unisensory retrieval. The results showed that there was a robust visual dominance effect and multisensory interference effect in WM retrieval, regardless of the subjective synchronous or subjective asynchronous audiovisual presentation. However, a weakened visual dominance effect was observed when the auditory stimulus was presented before the visual stimulus in the encoding period, particularly in the semantically incongruent case. These findings revealed that the prior-entry of sensory information in the early perceptual stage could affect the processing in the late cognitive stage to some extent, and supported the evidence that there is a persistent advantage for visuospatial sketchpad in multisensory WM.
Collapse
Affiliation(s)
- Jie Huang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, People's Republic of China
| | - Aijun Wang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, People's Republic of China
| | - Ming Zhang
- School of Psychology, Northeast Normal University, Changchun, People's Republic of China
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, People's Republic of China
- Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Li X, Cai S, Chen Y, Tian X, Wang A. Enhancement of visual dominance effects at the response level in children with attention-deficit/hyperactivity disorder. J Exp Child Psychol 2024; 242:105897. [PMID: 38461557 DOI: 10.1016/j.jecp.2024.105897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
Previous studies have widely demonstrated that individuals with attention-deficit/hyperactivity disorder (ADHD) exhibit deficits in conflict control tasks. However, there is limited evidence regarding the performance of children with ADHD in cross-modal conflict processing tasks. The current study aimed to investigate whether children with ADHD have poor conflict control, which has an impact on sensory dominance effects at different levels of information processing under the influence of visual similarity. A total of 82 children aged 7 to 14 years, including 41 children with ADHD and 41 age- and sex-matched typically developing (TD) children, were recruited. We used the 2:1 mapping paradigm to separate levels of conflict, and the congruency of the audiovisual stimuli was divided into three conditions. In C trials, the target stimulus and the distractor stimulus were identical, and the bimodal stimuli corresponded to the same response keys. In PRIC trials, the distractor stimulus differed from the target stimulus and did not correspond to any response keys. In RIC trials, the distractor stimulus differed from the target stimulus, and the bimodal stimuli corresponded to different response keys. Therefore, we explicitly differentiated cross-modal conflict into a preresponse level (PRIC > C), corresponding to the encoding process, and a response level (RIC > PRIC), corresponding to the response selection process. Our results suggested that auditory distractors caused more interference during visual processing than visual distractors caused during auditory processing (i.e., typical auditory dominance) at the preresponse level regardless of group. However, visual dominance effects were observed in the ADHD group, whereas no visual dominance effects were observed in the TD group at the response level. A possible explanation is that the increased interference effects due to visual similarity and children with ADHD made it more difficult to control conflict when simultaneously confronted with incongruent visual and auditory inputs. The current study highlights how children with ADHD process cross-modal conflicts at multiple levels of information processing, thereby shedding light on the mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Xin Li
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China
| | - Shizhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Yan Chen
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou 215025, China.
| | - Xiaoming Tian
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Aijun Wang
- Department of Psychology, Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
5
|
Multisensory Enhancement of Cognitive Control over Working Memory Capture of Attention in Children with ADHD. Brain Sci 2022; 13:brainsci13010066. [PMID: 36672047 PMCID: PMC9856446 DOI: 10.3390/brainsci13010066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in school-age children. Although it has been well documented that children with ADHD are associated with impairment of executive functions including working memory (WM) and inhibitory control, there is not yet a consensus as to the relationship between ADHD and memory-driven attentional capture (i.e., representations in WM bias attention toward the WM-matched distractors). The present study herein examined whether children with ADHD have sufficient cognitive control to modulate memory-driven attentional capture. 73 school-age children (36 with ADHD and 37 matched typically developing (TD) children) were instructed to perform a visual search task while actively maintaining an item in WM. In such a paradigm, the modality and the validity of the memory sample were manipulated. The results showed that under the visual WM encoding condition, no memory-driven attentional capture was observed in TD children, but significant capture was found in children with ADHD. In addition, under the audiovisual WM encoding condition, memory-matched distractors did not capture the attention of both groups. The results indicate a deficit of cognitive control over memory-driven attentional capture in children with ADHD, which can be improved by multisensory WM encoding. These findings enrich the relationship between ADHD and cognitive control and provide new insight into the influence of cross-modal processing on attentional guidance.
Collapse
|
6
|
Isherwood SJS, Keuken MC, Bazin PL, Forstmann BU. Cortical and subcortical contributions to interference resolution and inhibition - An fMRI ALE meta-analysis. Neurosci Biobehav Rev 2021; 129:245-260. [PMID: 34310977 DOI: 10.1016/j.neubiorev.2021.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023]
Abstract
Interacting with our environment requires the selection of appropriate responses and the inhibition of others. Such effortful inhibition is achieved by a number of interference resolution and global inhibition processes. This meta-analysis including 57 studies and 73 contrasts revisits the overlap and differences in brain areas supporting interference resolution and global inhibition in cortical and subcortical brain areas. Activation likelihood estimation was used to discern the brain regions subserving each type of cognitive control. Individual contrast analysis revealed a common activation of the bilateral insula and supplementary motor areas. Subtraction analyses demonstrated the voxel-wise differences in recruitment in a number of areas including the precuneus in the interference tasks and the frontal pole and dorsal striatum in the inhibition tasks. Our results display a surprising lack of subcortical involvement within these types of cognitive control, a finding that is likely to reflect a systematic gap in the field of functional neuroimaging.
Collapse
Affiliation(s)
- S J S Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands.
| | - M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands
| | - P L Bazin
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands; Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
| | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Du B, Cao S, Liu Y, Wei Q, Zhang J, Chen C, Wang X, Mo Y, Nie J, Qiu B, Hu P, Wang K. Abnormal Degree Centrality in White Matter Hyperintensities: A Resting-State Functional Magnetic Resonance Imaging Study. Front Psychiatry 2021; 12:684553. [PMID: 34326785 PMCID: PMC8315277 DOI: 10.3389/fpsyt.2021.684553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 12/04/2022] Open
Abstract
Background: White matter hyperintensities (WMHs) are a common occurrence with aging and are associated with cognitive impairment. However, the neurobiological mechanisms of WMHs remain poorly understood. Functional magnetic resonance imaging (fMRI) is a prominent tool that helps in non-invasive examinations and is increasingly used to diagnose neuropsychiatric diseases. Degree centrality (DC) is a common and reliable index in fMRI, which counts the number of direct connections for a given voxel in a network and reflects the functional connectivity within brain networks. We explored the underlying mechanism of cognitive impairment in WMHs from the perspective of DC. Methods: A total of 104 patients with WMHs and 37 matched healthy controls (HCs) were enrolled in the current study. All participants underwent individual and overall cognitive function tests and resting-state fMRI (rs-fMRI). WMHs were divided into three groups (39 mild WMHs, 37 moderate WMHs, and 28 severe WMHs) according to their Fazekas scores, and the abnormal DC values in the WMHs and HCs groups were analyzed. Results: There was a significant difference in the right inferior frontal orbital gyrus and left superior parietal gyrus between the WMHs and HCs groups. The functional connectivity between the right inferior frontal orbital gyrus and left inferior temporal gyrus, left superior parietal gyrus, and left parietal inferior gyrus was also different in the WMHs group. Conclusion: The change in DC value may be one of the underlying mechanisms of cognitive impairment in individuals with WMHs, which provides us with a new approach to delaying cognitive impairment in WMHs.
Collapse
Affiliation(s)
- Baogen Du
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Shanshan Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yuanyuan Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Jun Zhang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Xiaojing Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yuting Mo
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Jiajia Nie
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engneering, University of Science and Technology of China, Hefei, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China.,The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Fitzhugh MC, Hemesath A, Schaefer SY, Baxter LC, Rogalsky C. Functional Connectivity of Heschl's Gyrus Associated With Age-Related Hearing Loss: A Resting-State fMRI Study. Front Psychol 2019; 10:2485. [PMID: 31780994 PMCID: PMC6856672 DOI: 10.3389/fpsyg.2019.02485] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
A large proportion of older adults experience hearing loss. Yet, the impact of hearing loss on the aging brain, particularly on large-scale brain networks that support cognition and language, is relatively unknown. We used resting-state functional magnetic resonance imaging (fMRI) to identify hearing loss-related changes in the functional connectivity of primary auditory cortex to determine if these changes are distinct from age and cognitive measures known to decline with age (e.g., working memory and processing speed). We assessed the functional connectivity of Heschl's gyrus in 31 older adults (60-80 years) who expressed a range of hearing abilities from normal hearing to a moderate hearing loss. Our results revealed that both left and right Heschl's gyri were significantly connected to regions within auditory, sensorimotor, and visual cortices, as well as to regions within the cingulo-opercular network known to support attention. Participant age, working memory, and processing speed did not significantly correlate with any connectivity measures once variance due to hearing loss was removed. However, hearing loss was associated with increased connectivity between right Heschl's gyrus and the dorsal anterior cingulate in the cingulo-opercular network even once variance due to age, working memory, and processing speed was removed. This greater connectivity was not driven by high frequency hearing loss, but rather by hearing loss measured in the 0.5-2 kHz range, particularly in the left ear. We conclude that hearing loss-related differences in functional connectivity in older adults are distinct from other aging-related differences and provide insight into a possible neural mechanism of compensation for hearing loss in older adults.
Collapse
Affiliation(s)
- Megan C. Fitzhugh
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| | - Angela Hemesath
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| | - Sydney Y. Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Leslie C. Baxter
- Department of Psychology, Mayo Clinic, Scottsdale, AZ, United States
| | - Corianne Rogalsky
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| |
Collapse
|