1
|
Marinelli A, Boccardo N, Canepa M, Domenico DD, Semprini M, Chiappalone M, Laffranchi M, De Michieli L, Dosen S. A Novel Method for Vibrotactile Proprioceptive Feedback Using Spatial Encoding and Gaussian Interpolation. IEEE Trans Biomed Eng 2023; 70:3354-3365. [PMID: 37314906 DOI: 10.1109/tbme.2023.3285850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The bidirectional communication between the user and the prosthesis is an important requirement when developing prosthetic hands. Proprioceptive feedback is fundamental to perceiving prosthesis movement without the need for constant visual attention. We propose a novel solution to encode wrist rotation using a vibromotor array and Gaussian interpolation of vibration intensity. The approach generates tactile sensation that smoothly rotates around the forearm congruently with prosthetic wrist rotation. The performance of this scheme was systematically assessed for a range of parameter values (number of motors and Gaussian standard deviation). METHODS Fifteen non-disabled subjects and one individual with congenital limb deficiency used vibrational feedback to control a virtual hand in the target-achievement control test. Performance was assessed by end-point error and efficiency as well as subjective impressions. RESULTS The results showed a preference for smooth feedback and a higher number of motors (8 and 6 versus 4). With 8 and 6 motors, the standard deviation, determining the sensation spread and continuity, could be modulated through a broad range of values (0.1 - 2) without a significant performance loss. The overall average error and efficiency across these feedback configurations were ∼ 10% and ∼ 30%, respectively. For low values of standard deviation (0.1-0.5), the number of motors could be reduced to 4 without a significant performance decrease. CONCLUSION The study demonstrated that the developed strategy provided meaningful rotation feedback. Moreover, the results indicate that the Gaussian standard deviation could be used as an independent parameter to encode an additional feedback variable. SIGNIFICANCE The proposed method is a flexible and effective approach to provide proprioceptive feedback while adjusting the trade-off between sensation quality and the number of vibromotors.
Collapse
|
2
|
Sariyildiz E, Hanss F, Zhou H, Sreenivasa M, Armitage L, Mutlu R, Alici G. Experimental Evaluation of a Hybrid Sensory Feedback System for Haptic and Kinaesthetic Perception in Hand Prostheses. SENSORS (BASEL, SWITZERLAND) 2023; 23:8492. [PMID: 37896585 PMCID: PMC10611249 DOI: 10.3390/s23208492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
This study proposes a new hybrid multi-modal sensory feedback system for prosthetic hands that can provide not only haptic and proprioceptive feedback but also facilitate object recognition without the aid of vision. Modality-matched haptic perception was provided using a mechanotactile feedback system that can proportionally apply the gripping force through the use of a force controller. A vibrotactile feedback system was also employed to distinguish four discrete grip positions of the prosthetic hand. The system performance was evaluated with a total of 32 participants in three different experiments (i) haptic feedback, (ii) proprioceptive feedback and (iii) object recognition with hybrid haptic-proprioceptive feedback. The results from the haptic feedback experiment showed that the participants' ability to accurately perceive applied force depended on the amount of force applied. As the feedback force was increased, the participants tended to underestimate the force levels, with a decrease in the percentage of force estimation. Of the three arm locations (forearm volar, forearm ventral and bicep), and two muscle states (relaxed and tensed) tested, the highest accuracy was obtained for the bicep location in the relaxed state. The results from the proprioceptive feedback experiment showed that participants could very accurately identify four different grip positions of the hand prosthesis (i.e., open hand, wide grip, narrow grip, and closed hand) without a single case of misidentification. In experiment 3, participants could identify objects with different shapes and stiffness with an overall high success rate of 90.5% across all combinations of location and muscle state. The feedback location and muscle state did not have a significant effect on object recognition accuracy. Overall, our study results indicate that the hybrid feedback system may be a very effective way to enrich a prosthetic hand user's experience of the stiffness and shape of commonly manipulated objects.
Collapse
Affiliation(s)
- Emre Sariyildiz
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.Z.); (M.S.); (L.A.); (G.A.)
| | - Fergus Hanss
- Orora, 109 Burwood Rd., Hawthorn, VIC 3122, Australia;
| | - Hao Zhou
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.Z.); (M.S.); (L.A.); (G.A.)
| | - Manish Sreenivasa
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.Z.); (M.S.); (L.A.); (G.A.)
| | - Lucy Armitage
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.Z.); (M.S.); (L.A.); (G.A.)
| | - Rahim Mutlu
- Faculty of Engineering and Information Sciences, University of Wollongong in Dubai, Dubai P.O. Box 20183, United Arab Emirates;
- The Intelligent Robotics & Autonomous Systems Co. (iR@SC), Shellharbour, NSW 2529, Australia
| | - Gursel Alici
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.Z.); (M.S.); (L.A.); (G.A.)
| |
Collapse
|
3
|
Bruni G, Marinelli A, Bucchieri A, Boccardo N, Caserta G, Di Domenico D, Barresi G, Florio A, Canepa M, Tessari F, Laffranchi M, De Michieli L. Object stiffness recognition and vibratory feedback without ad-hoc sensing on the Hannes prosthesis: A machine learning approach. Front Neurosci 2023; 17:1078846. [PMID: 36875662 PMCID: PMC9978002 DOI: 10.3389/fnins.2023.1078846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction In recent years, hand prostheses achieved relevant improvements in term of both motor and functional recovery. However, the rate of devices abandonment, also due to their poor embodiment, is still high. The embodiment defines the integration of an external object - in this case a prosthetic device - into the body scheme of an individual. One of the limiting factors causing lack of embodiment is the absence of a direct interaction between user and environment. Many studies focused on the extraction of tactile information via custom electronic skin technologies coupled with dedicated haptic feedback, though increasing the complexity of the prosthetic system. Contrary wise, this paper stems from the authors' preliminary works on multi-body prosthetic hand modeling and the identification of possible intrinsic information to assess object stiffness during interaction. Methods Based on these initial findings, this work presents the design, implementation and clinical validation of a novel real-time stiffness detection strategy, without ad-hoc sensing, based on a Non-linear Logistic Regression (NLR) classifier. This exploits the minimum grasp information available from an under-sensorized and under-actuated myoelectric prosthetic hand, Hannes. The NLR algorithm takes as input motor-side current, encoder position, and reference position of the hand and provides as output a classification of the grasped object (no-object, rigid object, and soft object). This information is then transmitted to the user via vibratory feedback to close the loop between user control and prosthesis interaction. This implementation was validated through a user study conducted both on able bodied subjects and amputees. Results The classifier achieved excellent performance in terms of F1Score (94.93%). Further, the able-bodied subjects and amputees were able to successfully detect the objects' stiffness with a F1Score of 94.08% and 86.41%, respectively, by using our proposed feedback strategy. This strategy allowed amputees to quickly recognize the objects' stiffness (response time of 2.82 s), indicating high intuitiveness, and it was overall appreciated as demonstrated by the questionnaire. Furthermore, an embodiment improvement was also obtained as highlighted by the proprioceptive drift toward the prosthesis (0.7 cm).
Collapse
Affiliation(s)
- Giulia Bruni
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Marinelli
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, Genoa, Italy
| | - Anna Bucchieri
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Electronics, Information and Bioengineering (NearLab), Politecnico of Milan, Milan, Italy
| | - Nicolò Boccardo
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Genoa, Italy
| | - Giulia Caserta
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Dario Di Domenico
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Electronics and Telecommunications, Politecnico of Torino, Turin, Italy
| | - Giacinto Barresi
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Astrid Florio
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Michele Canepa
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Genoa, Italy
| | - Federico Tessari
- Newman Laboratory, Massachusetts Institute of Technology, Boston, MA, United States
| | | | | |
Collapse
|
4
|
Vargas L, Huang H, Zhu Y, Kamper D, Hu X. Resembled Tactile Feedback for Object Recognition Using a Prosthetic Hand. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3196958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Raleigh, NC, USA
| | - He Huang
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Raleigh, NC, USA
| | - Yong Zhu
- Mechanical and Aerospace Engineering Department, NC State University, Raleigh, NC, USA
| | - Derek Kamper
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Raleigh, NC, USA
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Gholinezhad S, Dosen S, Dideriksen J. Continuous Transition Impairs Discrimination of Electrotactile Frequencies. IEEE TRANSACTIONS ON HAPTICS 2022; 15:753-758. [PMID: 36129873 DOI: 10.1109/toh.2022.3208332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Just-noticeable difference (JND), indicating the ability to accurately identify small differences in stimulation parameters, can be used to choose more sensitive stimulation methods as well as to calibrate tactile feedback in closed-loop human-machine interfacing. The JND is typically estimated using a forced-choice-discrimination task, in which two stimuli with different intensities are delivered separated by a brief pause. In the applications of tactile feedback, however, the stimulation parameters are typically modulated continuously. It is unclear if the discriminability of stimuli separated in time characterizes the ability to distinguish continuous changes in stimulation intensity. The present study compared the JND when pairs of frequency-modulated electrotactile stimuli were separated in time and presented continuously at two different baseline frequencies (20 and 60 Hz). The results showed that the JND was significantly smaller with time-separation between stimuli, but that the JND obtained with different types of transitions were in most cases linearly associated. In conclusion, the discriminability of time-separated stimuli is systematically better compared to that of the stimuli presented continuously. This can have an impact when calibrating the tactile feedback where the conventional method of the JND assessment might lead to an overly optimistic estimate of detectable changes.
Collapse
|
6
|
Chai G, Wang H, Li G, Sheng X, Zhu X. Electrotactile feedback improves grip force control and enables object stiffness recognition while using a myoelectric hand. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1310-1320. [PMID: 35533165 DOI: 10.1109/tnsre.2022.3173329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current myoelectric hands are limited in their ability to provide effective sensory feedback to the users, which highly affects their functionality and utility. Although the sensory information of a myoelectric hand can be acquired with equipped sensors, transforming the sensory signals into effective tactile sensations on users for functional tasks is a largely unsolved challenge. The purpose of this study aims to demonstrate that electrotactile feedback of the grip force improves the sensorimotor control of a myoelectric hand and enables object stiffness recognition. The grip force of a sensorized myoelectric hand was delivered to its users via electrotactile stimulation based on four kinds of typical encoding strategies, including graded (G), linear amplitude (LA), linear frequency (LF), and biomimetic (B) modulation. Object stiffness was encoded with the change of electrotactile sensations triggered by final grip force, as the prosthesis grasped the objects. Ten able-bodied subjects and two transradial amputees were recruited to participate in a dual-task virtual eggs test (VET) and an object stiffness discrimination test (OSDT) to quantify the prosthesis users' ability to handle fragile objects and recognize object stiffnesses, respectively. The quantified results showed that with electrotactile feedback enabled, the four kinds of encoding strategies allowed subjects to better able to handle fragile objects with similar performance, and the subjects were able to differentiate four levels of object stiffness at favorable accuracies (>86%) and high manual efficiency. Strategy LA presented the best stiffness discrimination performance, while strategy B was able to reduce the discrimination time but the discrimination accuracy was not better than the other three strategies. Electrotactile feedback also enhanced prosthesis embodiment and improved the users' confidence in prosthetic control. Outcomes indicate electrotactile feedback can be effectively exploited by the prosthesis users for grip force control and object stiffness recognition, proving the feasibility of functional sensory restoration of myoelectric prostheses equipped with electrotactile feedback.
Collapse
|
7
|
Johnson JT, de Mari D, Doherty H, Hammond FL, Wheaton LA. Alpha-band activity in parietofrontal cortex predicts future availability of vibrotactile feedback in prosthesis use. Exp Brain Res 2022; 240:1387-1398. [PMID: 35257195 DOI: 10.1007/s00221-022-06340-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/21/2022] [Indexed: 01/01/2023]
Abstract
Prosthesis disuse and abandonment is an ongoing issue in upper-limb amputation. In addition to lost structural and motor function, amputation also results in decreased task-specific sensory information. One proposed remedy is augmenting somatosensory information using vibrotactile feedback to provide tactile feedback of grasping objects. While the role of frontal and parietal areas in motor tasks is well established, the neural and kinematic effects of this augmented vibrotactile feedback remain in question. In this study, we sought to understand the neurobehavioral effects of providing augmented feedback during a reach-grasp-transport task. Ten persons with sound limbs performed a motor task while wearing a prosthesis simulator with and without vibrotactile feedback. We hypothesized that providing vibrotactile feedback during prosthesis use would increase activity in frontal and parietal areas and improve grasp-related behavior. Results show that anticipation of upcoming vibrotactile feedback may be encoded in motor and parietal areas during the reach-to-grasp phase of the task. While grasp aperture is unaffected by vibrotactile feedback, the availability of vibrotactile feedback does lead to a reduction in velocity during object transport. These results help shed light on how engineered feedback is utilized by prostheses users and provide methodologies for further assessment in advanced prosthetics research.
Collapse
Affiliation(s)
- John T Johnson
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA
| | - Daniele de Mari
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA
| | - Harper Doherty
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA
| | - Frank L Hammond
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA
| | - Lewis A Wheaton
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA.
| |
Collapse
|
8
|
Rekant J, Fisher LE, Boninger M, Gaunt RA, Collinger JL. Amputee, clinician, and regulator perspectives on current and prospective upper extremity prosthetic technologies. Assist Technol 2022:1-13. [PMID: 34982647 DOI: 10.1080/10400435.2021.2020935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Existing prosthetic technologies for people with upper limb amputation are being adopted at moderate rates. Once fitted for these devices, many upper limb amputees report not using them regularly or at all. The primary aim of this study was to solicit feedback about prosthetic technology and important device design criteria from amputees, clinicians, and device regulators. We compare these perspectives to identify common or divergent priorities. Twenty-one adults with upper limb loss, 35 clinicians, and 3 regulators completed a survey on existing prosthetic technologies and a conceptual sensorimotor prosthesis driven by implanted myoelectric electrodes with sensory feedback via spinal root stimulation. The survey included questions from the Trinity Amputation and Prosthesis Experience Scale, the Disabilities of the Arm, Shoulder, and Hand, and novel questions about technology acceptance and neuroprosthetic design. User and clinician ratings of satisfaction with existing devices were similar. Amputees were most accepting of the proposed sensorimotor prosthesis (75.5% vs clinicians(68.8%), regulators(67.8%)). Stakeholders valued user-centered outcomes like individualized task goals, improved quality of life, device reliability, and user safety; regulators emphasized these last two. The results of this study provide insight into amputee, clinician, and regulator priorities to inform future upper-limb prosthetic design and clinical trial protocol development.
Collapse
Affiliation(s)
- Julie Rekant
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Michael Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, PA, USA
| | - Robert A Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neural Basis of Cognition, Pittsburgh, PA, USA.,Human Engineering Research Labs, VA Center of Excellence, Department of Veteran Affairs, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Dideriksen J, Markovic M, Lemling S, Farina D, Dosen S. Electrotactile and Vibrotactile Feedback Enable Similar Performance in Psychometric Tests and Closed-Loop Control. IEEE TRANSACTIONS ON HAPTICS 2022; 15:222-231. [PMID: 34618676 DOI: 10.1109/toh.2021.3117628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electro- and vibro-tactile stimulation are commonly employed for feedback in closed-loop human-machine interfacing. Although these feedback systems have been extensively investigated individually, they are rarely objectively compared. In this study, two state-of-the-art stimulation units (concentric electrode and C2-tactor) similar in shape and size were compared in psychometric and online control tests. The just noticeable difference and number of discriminable levels for intensity and frequency modulation were determined across values of carrier frequency and intensity, respectively. Next, subjects performed a compensatory tracking task, in which the feedback encoded the momentary tracking error. In the psychometric tests, intensity modulation outperformed frequency modulation and electrotactile stimulation enabled significantly higher resolution than vibrotactile stimulation, for the same carrier frequency. However, for the best-case settings (eletro-tactile: 100 Hz; vibro-tactile: 200 Hz), the two stimulation modalities were equivalent in the psychometric tests and in the online control tests, where the two stimulation methods resulted in similar correlation and deviation between the target and the generated trajectory. Time delay was slightly but significantly lower for the vibrotactile modality. Overall, the present assessment shows that despite psychometric differences between the two stimulation methods, they enable similar online control performance when parameters are optimally selected for each modality.
Collapse
|
10
|
Vargas L, Huang HH, Zhu Y, Hu X. Closed-loop control of a prosthetic finger via evoked proprioceptive information. J Neural Eng 2021; 18. [PMID: 34814128 DOI: 10.1088/1741-2552/ac3c9e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/23/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proprioceptive information plays an important role for recognizing and coordinating our limb's static and dynamic states relative to our body or the environment. In this study, we determined how artificially evoked proprioceptive feedback affected the continuous control of a prosthetic finger.Approach.We elicited proprioceptive information regarding the joint static position and dynamic movement of a prosthetic finger via a vibrotactor array placed around the subject's upper arm. Myoelectric signals of the finger flexor and extensor muscles were used to control the prosthesis, with or without the evoked proprioceptive feedback. Two control modes were evaluated: the myoelectric signal amplitudes were continuously mapped to either the position or the velocity of the prosthetic joint.Main results.Our results showed that the evoked proprioceptive information improved the control accuracy of the joint angle, with comparable performance in the position- and velocity-control conditions. However, greater angle variability was prominent during position-control than velocity-control. Without the proprioceptive feedback, the position-control tended to show a smaller angle error than the velocity-control condition.Significance.Our findings suggest that closed-loop control of a prosthetic device can potentially be achieved using non-invasive evoked proprioceptive feedback delivered to intact participants. Moreover, the evoked sensory information was integrated during myoelectric control effectively for both control strategies. The outcomes can facilitate our understanding of the sensorimotor integration process during human-machine interactions, which can potentially promote fine control of prosthetic hands.
Collapse
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, United States of America
| | - He Helen Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, United States of America
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States of America
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, United States of America
| |
Collapse
|
11
|
Testing silicone digit extensions as a way to suppress natural sensation to evaluate supplementary tactile feedback. PLoS One 2021; 16:e0256753. [PMID: 34469470 PMCID: PMC8410127 DOI: 10.1371/journal.pone.0256753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Abstract
Dexterous use of the hands depends critically on sensory feedback, so it is generally agreed that functional supplementary feedback would greatly improve the use of hand prostheses. Much research still focuses on improving non-invasive feedback that could potentially become available to all prosthesis users. However, few studies on supplementary tactile feedback for hand prostheses demonstrated a functional benefit. We suggest that confounding factors impede accurate assessment of feedback, e.g., testing non-amputee participants that inevitably focus intently on learning EMG control, the EMG’s susceptibility to noise and delays, and the limited dexterity of hand prostheses. In an attempt to assess the effect of feedback free from these constraints, we used silicone digit extensions to suppress natural tactile feedback from the fingertips and thus used the tactile feedback-deprived human hand as an approximation of an ideal feed-forward tool. Our non-amputee participants wore the extensions and performed a simple pick-and-lift task with known weight, followed by a more difficult pick-and-lift task with changing weight. They then repeated these tasks with one of three kinds of audio feedback. The tests were repeated over three days. We also conducted a similar experiment on a person with severe sensory neuropathy to test the feedback without the extensions. Furthermore, we used a questionnaire based on the NASA Task Load Index to gauge the subjective experience. Unexpectedly, we did not find any meaningful differences between the feedback groups, neither in the objective nor the subjective measurements. It is possible that the digit extensions did not fully suppress sensation, but since the participant with impaired sensation also did not improve with the supplementary feedback, we conclude that the feedback failed to provide relevant grasping information in our experiments. The study highlights the complex interaction between task, feedback variable, feedback delivery, and control, which seemingly rendered even rich, high-bandwidth acoustic feedback redundant, despite substantial sensory impairment.
Collapse
|
12
|
Shokur S, Mazzoni A, Schiavone G, Weber DJ, Micera S. A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. MED 2021; 2:912-937. [DOI: 10.1016/j.medj.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
|
13
|
Vargas L, Huang H(H, Zhu Y, Hu X. Static and dynamic proprioceptive recognition through vibrotactile stimulation. J Neural Eng 2021; 18:10.1088/1741-2552/ac0d43. [PMID: 34153955 PMCID: PMC8715509 DOI: 10.1088/1741-2552/ac0d43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proprioceptive information provides individuals with a sense of our limb's static position and dynamic movement. Impaired or a lack of such feedback can diminish our ability to perform dexterous motions with our biological limbs or assistive devices. Here we seek to determine whether both static and dynamic components of proprioception can be recognized using variation of the spatial and temporal components of vibrotactile feedback.Approach.An array of five vibrotactors was placed on the forearm of each subject. Each tactor was encoded to represent one of the five forearm postures. Vibratory stimulus was elicited to convey the static position and movement of the forearm. Four experimental blocks were performed to test each subject's recognition of a forearm's simulated static position, rotational amplitude, rotational amplitude and direction, and rotational speed.Main results.Our results showed that the subjects were able to perform proprioceptive recognition based on the delivered vibrotactile information. Specifically, rotational amplitude recognition resulted in the highest level of accuracy (99.0%), while the recognition accuracy of the static position and the rotational amplitude-direction was the lowest (91.7% and 90.8%, respectively). Nevertheless, all proprioceptive properties were perceived with >90% accuracy, indicating that the implemented vibrotactile encoding scheme could effectively provide proprioceptive information to the users.Significance.The outcomes suggest that information pertaining to static and dynamic aspects of proprioception can be accurately delivered using an array of vibrotactors. This feedback approach could be used to potentially evaluate the sensorimotor integration processes during human-machine interactions, and to improve sensory feedback in clinical populations with somatosensory impairments.
Collapse
Affiliation(s)
- Luis Vargas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, 10206B Mary Ellen Jones Bldg, Raleigh, NC 27599, United States of America
| | - He (Helen) Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, 10206B Mary Ellen Jones Bldg, Raleigh, NC 27599, United States of America
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States of America
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC and North Carolina State University, 10206B Mary Ellen Jones Bldg, Raleigh, NC 27599, United States of America
| |
Collapse
|
14
|
Pena AE, Abbas JJ, Jung R. Channel-hopping during surface electrical neurostimulation elicits selective, comfortable, distally referred sensations. J Neural Eng 2021; 18. [PMID: 33770781 DOI: 10.1088/1741-2552/abf28c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/23/2021] [Indexed: 11/12/2022]
Abstract
Objective.Lack of sensation from a hand or prosthesis can result in substantial functional deficits. Surface electrical stimulation of the peripheral nerves is a promising non-invasive approach to restore lost sensory function. However, the utility of standard surface stimulation methods has been hampered by localized discomfort caused by unintended activation of afferents near the electrodes and limited ability to specifically target underlying neural tissue. The objectives of this work were to develop and evaluate a novel channel-hopping interleaved pulse scheduling (CHIPS) strategy for surface stimulation that is designed to activate deep nerves while reducing activation of fibers near the electrodes.Approach.The median nerve of able-bodied subjects was activated by up to two surface stimulating electrode pairs placed around their right wrist. Subjects received biphasic current pulses either from one electrode pair at a time (single-channel), or interleaved between two electrode pairs (multi-channel). Percept thresholds were characterized for five pulse durations under each approach, and psychophysical questionnaires were used to interrogate the perceived modality, quality and location of evoked sensations.Main results.Stimulation with CHIPS elicited enhanced tactile percepts that were distally referred, while avoiding the distracting sensations and discomfort associated with localized charge densities. These effects were reduced after introduction of large delays between interleaved pulses.Significance.These findings demonstrate that our pulse scheduling strategy can selectively elicit referred sensations that are comfortable, thus overcoming the primary limitations of standard surface stimulation methods. Implementation of this strategy with an array of spatially distributed electrodes may allow for rapid and effective stimulation fitting. The ability to elicit comfortable and referred tactile percepts may enable the use of this neurostimulation strategy to provide meaningful and intuitive feedback from a prosthesis, enhance tactile feedback after sensory loss secondary to nerve damage, and deliver non-invasive stimulation therapies to treat various pain conditions.
Collapse
Affiliation(s)
- A E Pena
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States of America
| | - J J Abbas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - R Jung
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States of America
| |
Collapse
|
15
|
Dong J, Jensen W, Geng B, Kamavuako EN, Dosen S. Online Closed-Loop Control Using Tactile Feedback Delivered Through Surface and Subdermal Electrotactile Stimulation. Front Neurosci 2021; 15:580385. [PMID: 33679292 PMCID: PMC7930737 DOI: 10.3389/fnins.2021.580385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022] Open
Abstract
Aim Limb loss is a dramatic event with a devastating impact on a person’s quality of life. Prostheses have been used to restore lost motor abilities and cosmetic appearance. Closing the loop between the prosthesis and the amputee by providing somatosensory feedback to the user might improve the performance, confidence of the amputee, and embodiment of the prosthesis. Recently, a minimally invasive method, in which the electrodes are placed subdermally, was presented and psychometrically evaluated. The present study aimed to assess the quality of online control with subdermal stimulation and compare it to that achieved using surface stimulation (common benchmark) as well as to investigate the impact of training on the two modalities. Methods Ten able-bodied subjects performed a PC-based compensatory tracking task. The subjects employed a joystick to track a predefined pseudorandom trajectory using feedback on the momentary tracking error, which was conveyed via surface and subdermal electrotactile stimulation. The tracking performance was evaluated using the correlation coefficient (CORR), root mean square error (RMSE), and time delay between reference and generated trajectories. Results Both stimulation modalities resulted in good closed-loop control, and surface stimulation outperformed the subdermal approach. There was significant difference in CORR (86 vs 77%) and RMSE (0.23 vs 0.31) between surface and subdermal stimulation (all p < 0.05). The RMSE of the subdermal stimulation decreased significantly in the first few trials. Conclusion Subdermal stimulation is a viable method to provide tactile feedback. The quality of online control is, however, somewhat worse compared to that achieved using surface stimulation. Nevertheless, due to minimal invasiveness, compactness, and power efficiency, the subdermal interface could be an attractive solution for the functional application in sensate prostheses.
Collapse
Affiliation(s)
- Jian Dong
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China.,Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Winnie Jensen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bo Geng
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ernest Nlandu Kamavuako
- Centre for Robotics Research, Department of Informatics, King's College London, London, United Kingdom
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
16
|
Ng KKW, Olausson C, Vickery RM, Birznieks I. Temporal patterns in electrical nerve stimulation: Burst gap code shapes tactile frequency perception. PLoS One 2020; 15:e0237440. [PMID: 32790784 PMCID: PMC7425972 DOI: 10.1371/journal.pone.0237440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
We have previously described a novel temporal encoding mechanism in the somatosensory system, where mechanical pulses grouped into periodic bursts create a perceived tactile frequency based on the duration of the silent gap between bursts, rather than the mean rate or the periodicity. This coding strategy may offer new opportunities for transmitting information to the brain using various sensory neural prostheses and haptic interfaces. However, it was not known whether the same coding mechanisms apply when using electrical stimulation, which recruits a different spectrum of afferents. Here, we demonstrate that the predictions of the burst gap coding model for frequency perception apply to burst stimuli delivered with electrical pulses, re-emphasising the importance of the temporal structure of spike patterns in neural processing and perception of tactile stimuli. Reciprocally, the electrical stimulation data confirm that the results observed with mechanical stimulation do indeed depend on neural processing mechanisms in the central nervous system, and are not due to skin mechanical factors and resulting patterns of afferent activation.
Collapse
Affiliation(s)
- Kevin K. W. Ng
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
- * E-mail:
| | - Christoffer Olausson
- Neuroscience Research Australia, Sydney, Australia
- Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Richard M. Vickery
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Ingvars Birznieks
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
17
|
Sensinger JW, Dosen S. A Review of Sensory Feedback in Upper-Limb Prostheses From the Perspective of Human Motor Control. Front Neurosci 2020; 14:345. [PMID: 32655344 PMCID: PMC7324654 DOI: 10.3389/fnins.2020.00345] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
This manuscript reviews historical and recent studies that focus on supplementary sensory feedback for use in upper limb prostheses. It shows that the inability of many studies to speak to the issue of meaningful performance improvements in real-life scenarios is caused by the complexity of the interactions of supplementary sensory feedback with other types of feedback along with other portions of the motor control process. To do this, the present manuscript frames the question of supplementary feedback from the perspective of computational motor control, providing a brief review of the main advances in that field over the last 20 years. It then separates the studies on the closed-loop prosthesis control into distinct categories, which are defined by relating the impact of feedback to the relevant components of the motor control framework, and reviews the work that has been done over the last 50+ years in each of those categories. It ends with a discussion of the studies, along with suggestions for experimental construction and connections with other areas of research, such as machine learning.
Collapse
Affiliation(s)
- Jonathon W. Sensinger
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, Canada
| | - Strahinja Dosen
- Department of Health Science and Technology, The Faculty of Medicine, Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
18
|
Karakuş İ, Güçlü B. Psychophysical principles of discrete event-driven vibrotactile feedback for prostheses. Somatosens Mot Res 2020; 37:186-203. [PMID: 32448043 DOI: 10.1080/08990220.2020.1769055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose/aim of the study: We aimed to establish psychophysical principles for non-invasive vibrotactile feedback signalling discrete transition events (e.g., extension to flexion) during use of prostheses, especially for the upper limbs.Materials and methods: Two vibrotactile actuators were used on both upper arms of 10 able-bodied human participants. Absolute thresholds, psychometric functions, and magnitude estimates were measured to equalize the sensation magnitudes for the tested vibrotactile frequencies and skin sites. Then, same-different and pattern recognition tasks were run to evaluate, respectfully, the discrimination and closed-set identification of stimuli with varying parameters (2 frequencies, 2 magnitudes, 2 sites). Finally, parameters of the left/right stimuli were mapped to hypothetical prosthesis events representing object/force and movement type. The stimuli were applied sequentially in accordance with the discrete event-driven feedback paradigm.Results: Reliable psychophysical models could be established for individual participants as verified by repetitive threshold measurements and relative adjustment of stimulus levels based on sensation magnitudes. Discrimination accuracy was higher for magnitude versus frequency comparisons; and magnitude discrimination accuracy was correlated with magnitude estimate differences. Pattern recognition recall/precision rates decreased from ∼0.7 to ∼0.5 for sequential delivery of two stimulus patterns to one arm versus to two arms. Using the patterns as two and three consecutive prosthesis events yielded statistically similar performance rates not correlated with magnitude estimate differences.Conclusions: By careful calibration of stimuli based on psychophysical principles, discrete event-driven vibrotactile feedback can be used to signal manipulated object and movement information with moderate identification rates as shown by confusion matrices.
Collapse
Affiliation(s)
- İpek Karakuş
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, Turkey
| | - Burak Güçlü
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|
19
|
Vargas L, Huang H, Zhu Y, Hu X. Object Shape and Surface Topology Recognition Using Tactile Feedback Evoked through Transcutaneous Nerve Stimulation. IEEE TRANSACTIONS ON HAPTICS 2020; 13:152-158. [PMID: 31976905 PMCID: PMC7237381 DOI: 10.1109/toh.2020.2967366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tactile feedback is critical for distinguishing different object properties. In this article, we determined if tactile feedback evoked by transcutaneous nerve stimulation can be used to detect objects of different shape and surface topology. To evoke tactile sensation at different fingers, a 2x8 electrode grid was placed along the subject's upper arm, and two concurrent electrical stimulation trains targeted the median and ulnar nerve bundles, which evoked individually modulated sensations at different fingers. Fingertip forces of the prosthetic hand were transformed to stimulation current amplitude. Object shape was encoded based on finger-object contact timing. Surface topology represented by ridge height and spacing was encoded through current amplitude and stimulation time interval, respectively. The elicited sensation allowed subjects to determine object shape with success rates >84%. Surface topology recognition resulted in success rates >81%. Our findings suggest that tactile feedback evoked from transcutaneous nerve stimulation allows the recognition of object shape and surface topology. The ability to recognize these properties may help improve object manipulation and promote fine control of a prosthetic hand.
Collapse
|
20
|
Gonzalez-Rodriguez A, Ramon JL, Morell V, Garcia GJ, Pomares J, Jara CA, Ubeda A. Evaluation of Optimal Vibrotactile Feedback for Force-Controlled Upper Limb Myoelectric Prostheses. SENSORS 2019; 19:s19235209. [PMID: 31795067 PMCID: PMC6928933 DOI: 10.3390/s19235209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022]
Abstract
The main goal of this study is to evaluate how to optimally select the best vibrotactile pattern to be used in a closed loop control of upper limb myoelectric prostheses as a feedback of the exerted force. To that end, we assessed both the selection of actuation patterns and the effects of the selection of frequency and amplitude parameters to discriminate between different feedback levels. A single vibrotactile actuator has been used to deliver the vibrations to subjects participating in the experiments. The results show no difference between pattern shapes in terms of feedback perception. Similarly, changes in amplitude level do not reflect significant improvement compared to changes in frequency. However, decreasing the number of feedback levels increases the accuracy of feedback perception and subject-specific variations are high for particular participants, showing that a fine-tuning of the parameters is necessary in a real-time application to upper limb prosthetics. In future works, the effects of training, location, and number of actuators will be assessed. This optimized selection will be tested in a real-time proportional myocontrol of a prosthetic hand.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andres Ubeda
- Correspondence: ; Tel.: +34-965-903-400 (ext. 1094)
| |
Collapse
|
21
|
Guemann M, Bouvier S, Halgand C, Paclet F, Borrini L, Ricard D, Lapeyre E, Cattaert D, Rugy AD. Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees. J Neuroeng Rehabil 2019; 16:138. [PMID: 31722740 PMCID: PMC6854744 DOI: 10.1186/s12984-019-0597-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/20/2019] [Indexed: 12/05/2022] Open
Abstract
Background Vibrotactile stimulation is a promising venue in the field of prosthetics to retrain sensory feedback deficits following amputation. Discrimination is well established at the forearm level but not at the upper arm level. Moreover, the effects of combining vibration characteristics such as duration and intensity has never been investigated. Method We conducted experiments on spatial discrimination (experiment 1) and tactile intensity perception (experiment 2), using 9 combinations of 3 intensities and 3 durations of vibror stimulations device. Those combinations were tested under 4 arrangements with an array of 6 vibrors. In both experiments, linear orientation aligned with the upper arm longitudinal axis were compared to circular orientation on the upper arm circumference. For both orientations, vibrors were placed either with 3cm space between the center of 2 vibrors or proportionally to the length or the circumference of the subject upper arm. Eleven heathy subjects underwent the 2 experiments and 7 amputees (humeral level) participated in the spatial discrimination task with the best arrangement found. Results Experiment 1 revealed that circular arrangements elicited better scores than the linear ones. Arrangements with vibrors spaced proportionally elicited better scores (up to 75% correct) than those with 3 cm spacing. Experiment 2, showed that the perceived intensity of the vibration increases with the intensity of the vibrors’ activation, but also with their duration of activation. The 7 patients obtained high scores (up to 91.67% correct) with the circular proportional (CP) arrangement. Discussion These results highlight that discrete and short vibrations can be well discriminated by healthy subjects and people with an upper limb amputation. These new characteristics of vibrations have great potential for future sensory substitution application in closed-loop prosthetic control.
Collapse
Affiliation(s)
- Matthieu Guemann
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France.
| | | | - Christophe Halgand
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France
| | - Florent Paclet
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France
| | - Leo Borrini
- Departement of Rehabilitation at the Army instruction Hospital, 1 Rue du Lieutenant Raoul Batany, Clamart, 92190, France
| | - Damien Ricard
- Department of Neurology at the Army instruction Hospital, 1 Rue du Lieutenant Raoul Batany, Clamart, 92190, France
| | - Eric Lapeyre
- Departement of Rehabilitation at the Army instruction Hospital, 1 Rue du Lieutenant Raoul Batany, Clamart, 92190, France
| | - Daniel Cattaert
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France
| | - Aymar de Rugy
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France.,Centre for sensorimotor performance HMNS, University of Queensland, Brisbane, Australia
| |
Collapse
|