1
|
Bisht V, Rawat JM, Gaira KS, Purohit S, Anand J, Sinha S, Mitra D, Ataya FS, Elgazzar AM, El-Saber Batiha G, Rawat B. Assessment of genetic homogeneity of in-vitro propagated apple root stock MM 104 using ISSR and SCoT primers. BMC PLANT BIOLOGY 2024; 24:240. [PMID: 38570817 PMCID: PMC10988950 DOI: 10.1186/s12870-024-04939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Apple is an important fruit crop that is always in demand due to its commercial and nutraceutical value. Also, the requirement for quality planting material for this fruit crop for new plantations is increasing continuously. In-vitro propagation is an alternative approach, which may help to produce genetically identical high grade planting material. In this study, for the first time, an efficient and reproducible propagation protocol has been established for apple root stock MM 104 via axillary bud. Culturing axillary buds on Murashige and Skoog apple rootstock (MM 104) resulted in better in-vitro propagation. (MS) basal medium supplemented with 3.0% (w/v) sucrose and 0.8% (w/v) agar. The axillary buds were established in MS basal medium with BA (5.0 µM), NAA (1.0 µM) and further used to establish invitro propagation protocol. Plant Growth Regulators (PGRs), BA (1.0 µM) in combination with NAA (1.0 µM) was found most efficient for shoot multiplication (100%) and produced 9.8 shoots/explants with an average shoot length of (2.4 ± cm). All the shoots produced roots in 0.1 µM IBA with a 5-day dark period. Acclimatization of in-vitro raised plantlets was obtained with vermiculite: perlite: sand: soil (2:2:1:1) resulting in 76% survival under field conditions. The study showed that the use of axillary bud is efficient for multiple-shoot production of apple rootstock (MM 104). This is the first comprehensive report on in-vitro growth of apple root stock MM 104 with an assessment of genetic stability using DNA fingerprinting profiles based on Inter Simple Sequence Repeats (ISSR) and Start Codon Targeted (SCoT). The genetic stability of in-vitro-produced plants, as determined by SCoT and ISSR primers, demonstrated genetic closeness to the mother plant.
Collapse
Affiliation(s)
- Vandana Bisht
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmla, Almora, 263643, Uttarakhand, India
| | - Janhvi Mishra Rawat
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
| | - Kailash Singh Gaira
- G. B. Pant National Institute of Himalayan Environment, Sikkim Regional Centre, Pangthang, Gangtok, 737 101, Sikkim, India
| | - Sumit Purohit
- Uttarakhand Council for Biotechnology, Pantnagar, U.S. Nagar, Haldi, 263145, Uttarakhand, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
| | - Somya Sinha
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed M Elgazzar
- Department of Veterinary Forensic Medicine and Toxicology, Alexandria University, Alexandria, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Damanhour University, Damanhour, AlBeheira, Egypt
| | - Balwant Rawat
- School of Agriculture, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India.
| |
Collapse
|
2
|
Xu Q, Wu S, Fu T, Xu Y, Yang S, Li M, Yi Z, Xue S. Unlocking the potential of Dongting Lake-grown Miscanthus lutarioriparius biomass: A comprehensive quality analysis and bioproduct application study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165276. [PMID: 37406706 DOI: 10.1016/j.scitotenv.2023.165276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Miscanthus lutarioriparius grown in Dongting Lake has an annual biomass yield potential of 1 million tons. However, with the shutdown of its previous utilization for paper-making, abandoning this huge amount of biomass has caused serious economic, ecological, and social problems. Constructing an industrial cluster to continuously convert biomass into various bioproducts is a win-win measure to address this dilemma. With the increasing confirmation of the importance of biomass quality affecting the conservation process, fully understanding the biomass characteristics of Dongting Lake-grown M. lutarioriparius is crucial for building a scientific industrial cluster. The present work is designed to explore the variation in biomass quality across the entire Dongting Lake area. Results show that the biomass contented with Cd, Mn, Zn, and Cr has significant geographical differences, with a general trend of Southern Dongting Lake-grown biomass having a higher concentration than that from Eastern and Western Dongting Lake areas. Moreover, significant differences are found in terms of biomass ash content, lignin content, and the degree of polymerization of cellulose (DP). The biomass with low ash content is generally from the entire Eastern Dongting Lake area and the northern part of the Western Dongting Lake area. Virtually all Western Dongting Lake-grown biomass has a low lignin content (approximately 18 %). Regarding the spatial variation of DP, Eastern Dongting Lake-grown biomass has a higher DP (average at 585.33) than that in Southern (575.15) and then Western Dongting Lake (529.16). Based on these quality indicators, the biomass production potentials for bioethanol, biochar, and xylo-oligosaccharide were calculated and visualized. Results show that biomass from almost the entire Western and Eastern Dongting Lake area is suitable for bioethanol and xylo-oligosaccharide production, while biomass from the Southern Dongting Lake area for biochar production. These results provide scientific guidance for the future utilization of Dongting Lake-grown M. lutarioriparius biomass.
Collapse
Affiliation(s)
- Qiang Xu
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Shenglan Wu
- Orient Science & Technology College of Hunan Agricultural University, Changsha 410128, PR China
| | - Tongcheng Fu
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China
| | - Yi Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Sai Yang
- Orient Science & Technology College of Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China
| | - Meng Li
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China
| | - Zili Yi
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China
| | - Shuai Xue
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, PR China; Hunan Engineering Laboratory of Miscanthus Ecological Applications, Hunan Agricultural University, Changsha 410128, PR China; Hunan Branch, National Energy R & D Center for Non-food Biomass, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
3
|
Palacıoğlu G, Alkan M, Derviş S, Bayraktar H, Özer G. Molecular phylogeny of plant pathogenic fungi based on start codon targeted (SCoT) polymorphism. Mol Biol Rep 2023; 50:8271-8279. [PMID: 37578578 DOI: 10.1007/s11033-023-08735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND A number of molecular marker systems have been developed to assess genetic diversity, carry out phylogenetic analysis, and diagnose and discriminate plant pathogenic fungi. The start codon targeted (SCoT) markers system is a novel approach used here to investigate intra and interspecific polymorphisms of phytopathogenic fungi. MATERIALS AND METHODS This study assessed genetic variability between and within 96 isolates of ten fungal species associated with a variety of plant species using 36 SCoT primers. RESULTS The six primers generated 331 distinct and reproducible banding patterns, of which 322 were polymorphic (97.28%), resulting in 53.67 polymorphic bands per primer. All primers produced informative amplification profiles that distinguished all fungal species. With a resolving power of 10.65, SCoT primer 12 showed the highest polymorphism among species, followed by primer 33 and primer 29. Polymorphic loci (PPL), Nei's diversity index (h), and Shannon index (I) percentages were 6.25, 0.018, and 0.028, respectively. UPGMA analysis separated all isolates based on morphological classification and revealed significant genetic variation among fungal isolates at the intraspecific level. PCoA analysis strongly supported fungal species discrimination and genetic variation. The other parameters of evaluation proved that SCoT markers are at least as effective as other DNA markers. CONCLUSIONS SCoT markers were effective in identifying plant pathogenic fungi and were a powerful tool for estimating genetic variation and population structure of different fungi species.
Collapse
Affiliation(s)
- Gülsüm Palacıoğlu
- Department of Plant Protection, Faculty of Agriculture, Şırnak University, Şırnak, Turkey
| | - Mehtap Alkan
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Sibel Derviş
- Department of Plant and Animal Production, Vocational School of Kızıltepe, Mardin Artuklu University, Mardin, Turkey
| | - Harun Bayraktar
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey.
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
4
|
Iacono R, Slavov GT, Davey CL, Clifton-Brown J, Allison G, Bosch M. Variability of cell wall recalcitrance and composition in genotypes of Miscanthus from different genetic groups and geographical origin. FRONTIERS IN PLANT SCIENCE 2023; 14:1155188. [PMID: 37346113 PMCID: PMC10279889 DOI: 10.3389/fpls.2023.1155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023]
Abstract
Miscanthus is a promising crop for bioenergy and biorefining in Europe. The improvement of Miscanthus as a crop relies on the creation of new varieties through the hybridization of germplasm collected in the wild with genetic variation and suitable characteristics in terms of resilience, yield and quality of the biomass. Local adaptation has likely shaped genetic variation for these characteristics and is therefore important to quantify. A key biomass quality parameter for biorefining is the ease of conversion of cell wall polysaccharides to monomeric sugars. Thus far, the variability of cell wall related traits in Miscanthus has mostly been explored in accessions from limited genetic backgrounds. Here we analysed the soil and climatic conditions of the original collection sites of 592 Miscanthus genotypes, which form eight distinct genetic groups based on discriminant analysis of principal components of 25,014 single-nucleotide polymorphisms. Our results show that species of the genus Miscanthus grow naturally across a range of soil and climate conditions. Based on a detailed analysis of 49 representative genotypes, we report generally minor differences in cell wall characteristics between different genetic groups and high levels of genetic variation within groups, with less investigated species like M. floridulus showing lower recalcitrance compared to the other genetic groups. The results emphasize that both inter- and intra- specific variation in cell wall characteristics and biomass recalcitrance can be used effectively in Miscanthus breeding programmes, while also reinforcing the importance of considering biomass yield when quantifying overall conversion efficiency. Thus, in addition to reflecting the complexity of the interactions between compositional and structural cell wall features and cell wall recalcitrance to sugar release, our results point to traits that could potentially require attention in breeding programmes targeted at improving the Miscanthus biomass crop.
Collapse
Affiliation(s)
- Rosario Iacono
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Gancho T. Slavov
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
- Radiata Pine Breeding Company, Rotorua, New Zealand
| | - Christopher L. Davey
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - John Clifton-Brown
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
- Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Gordon Allison
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Maurice Bosch
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| |
Collapse
|
5
|
Shahi Shavvon R, Qi HL, Mafakheri M, Fan PZ, Wu HY, Bazdid Vahdati F, Al-Shmgani HS, Wang YH, Liu J. Unravelling the genetic diversity and population structure of common walnut in the Iranian Plateau. BMC PLANT BIOLOGY 2023; 23:201. [PMID: 37072719 PMCID: PMC10111805 DOI: 10.1186/s12870-023-04190-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Common walnut (Juglans regia L.) has a long cultivation history, given its highly valuable wood and rich nutritious nuts. The Iranian Plateau has been considered as one of the last glaciation refugia and a centre of origin and domestication for the common walnut. However, a prerequisite to conserve or utilize the genetic resources of J. regia in the plateau is a comprehensive evaluation of the genetic diversity that is conspicuously lacking. In this regard, we used 31 polymorphic simple sequence repeat (SSR) markers to delineate the genetic variation and population structure of 508 J. regia individuals among 27 populations from the Iranian Plateau. RESULTS The SSR markers expressed a high level of genetic diversity (HO = 0.438, and HE = 0.437). Genetic differentiation among the populations was moderate (FST = 0.124), and genetic variation within the populations (79%) significantly surpassed among populations (21%). The gene flow (Nm = 1.840) may have remarkably influenced the population genetic structure of J. regia, which can be attributed to anthropological activities and wind dispersal of pollen. The STRUCTURE analysis divided the 27 populations into two main clusters. Comparing the neighbor-joining and principal coordinate analysis dendrograms and the Bayesian STRUCTURE analysis revealed the general agreement between the population subdivisions and the genetic relationships among the populations. However, a few geographically close populations dispersed into different clusters. Further, the low genetic diversity of the Sulaymaniyah (SMR) population of Iraq necessitates urgent conservation by propagation and seedling management or tissue culture methods; additionally, we recommend the indispensable preservation of the Gonabad (RGR) and Arak (AKR) populations in Iran. CONCLUSIONS These results reflected consistent high geographical affinity of the accession across the plateau. Our findings suggest that gene flow is a driving factor influencing the genetic structure of J. regia populations, whereas ecological and geological variables did not act as strong barriers. Moreover, the data reported herein provide new insights into the population structure of J. regia germplasm, which will help conserve genetic resources for the future, hence improving walnut breeding programs' efficiency.
Collapse
Affiliation(s)
| | - Hai-Ling Qi
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Mohammad Mafakheri
- Department of Plant Sciences, University of California - Davis, Davis, CA, 95616, USA
| | - Pen-Zheng Fan
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Yu Wu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Hanady S Al-Shmgani
- Department of Biology, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Germplasm of Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
6
|
Senkoro AM, Talhinhas P, Simões F, Batista-Santos P, Shackleton CM, Voeks RA, Marques I, Ribeiro-Barros AI. The genetic legacy of fragmentation and overexploitation in the threatened medicinal African pepper-bark tree, Warburgia salutaris. Sci Rep 2020; 10:19725. [PMID: 33184322 PMCID: PMC7661512 DOI: 10.1038/s41598-020-76654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
The pepper-bark tree (Warburgia salutaris) is one of the most highly valued medicinal plant species worldwide. Native to southern Africa, this species has been extensively harvested for the bark, which is widely used in traditional health practices. Illegal harvesting coupled with habitat degradation has contributed to fragmentation of populations and a severe decline in its distribution. Even though the species is included in the IUCN Red List as Endangered, genetic data that would help conservation efforts and future re-introductions are absent. We therefore developed new molecular markers to understand patterns of genetic diversity, structure, and gene flow of W. salutaris in one of its most important areas of occurrence (Mozambique). In this study, we have shown that, despite fragmentation and overexploitation, this species maintains a relatively high level of genetic diversity supporting the existence of random mating. Two genetic groups were found corresponding to the northern and southern locations. Our study suggests that, if local extinctions occurred in Mozambique, the pepper-bark tree persisted in sufficient numbers to retain a large proportion of genetic diversity. Management plans should concentrate on maintaining this high level of genetic variability through both in and ex-situ conservation actions.
Collapse
Affiliation(s)
- Annae M Senkoro
- Department of Environmental Science, Rhodes University, Grahamstown, 6140, South Africa.,Departmento de Ciências Biológicas, Universidade Eduardo Mondlane CP 257, Maputo, Moçambique
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Fernanda Simões
- Instituto Nacional de Investigação Agrária E Veterinária, Av. da República, Quinta Marquês, Edificio Sede, 2780-157, Oeiras, Portugal
| | - Paula Batista-Santos
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Charlie M Shackleton
- Department of Environmental Science, Rhodes University, Grahamstown, 6140, South Africa
| | - Robert A Voeks
- Department of Geography and the Environment, California State University, 800 N State College Blvd, FullertonFullerton, CA, 92831, USA
| | - Isabel Marques
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| | - Ana I Ribeiro-Barros
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
| |
Collapse
|
7
|
Population Genetic Diversity and Structure of Ancient Tree Populations of Cryptomeria japonica var. sinensis Based on RAD-seq Data. FORESTS 2020. [DOI: 10.3390/f11111192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research highlights: Our study is the first to explore the genetic composition of ancient Cryptomeria trees across a distribution range in China. Background and objectives: Cryptomeria japonica var. sinensis is a native forest species of China; it is widely planted in the south of the country to create forests and for wood production. Unlike Cryptomeria in Japan, genetic Chinese Cryptomeria has seldom been studied, although there is ample evidence of its great ecological and economic value. Materials and methods: Because of overcutting, natural populations are rare in the wild. In this study, we investigated seven ancient tree populations to explore the genetic composition of Chinese Cryptomeria through ddRAD-seq technology. Results: The results reveal a lower genetic variation but higher genetic differentiation (Ho = 0.143, FST = 0.1204) than Japanese Cryptomeria (Ho = 0.245, FST = 0.0455). The 86% within-population variation is based on an analysis of molecular variance (AMOVA). Significant excess heterozygosity was detected in three populations and some outlier loci were found; these were considered to be the consequence of selection or chance. Structure analysis and dendrogram construction divided the seven ancient tree populations into four groups corresponding to the geographical provinces in which the populations are located, but there was no obvious correlation between genetic distance and geographic distance. A demographic history analysis conducted by a Stairway Plot showed that the effective population size of Chinese Cryptomeria had experienced a continuing decline from the mid-Pleistocene to the present. Our findings suggest that the strong genetic drift caused by climate fluctuation and intense anthropogenic disturbance together contributed to the current low diversity and structure. Considering the species’ unfavorable conservation status, strategies are urgently required to preserve the remaining genetic resources.
Collapse
|
8
|
Ye H, Wu J, Wang Z, Hou H, Gao Y, Han W, Ru W, Sun G, Wang Y. Population genetic variation characterization of the boreal tree Acer ginnala in Northern China. Sci Rep 2020; 10:13515. [PMID: 32782277 PMCID: PMC7419535 DOI: 10.1038/s41598-020-70444-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Genetic diversity and differentiation are revealed particularly through spatio-temporal environmental heterogeneity. Acer ginnala, as a deciduous shrub/small tree, is a foundation species in many terrestrial ecosystems of Northern China. Owing to its increased use as an economic resource, this species has been in the vulnerability. Therefore, the elucidations of the genetic differentiation and influence of environmental factors on A. ginnala are very critical for its management and future utilization strategies. In this study, high genetic diversity and differentiation occurred in A. ginnala, which might be resulted from its pollination mechanism and species characteristics. Compared with the species level, relatively low genetic diversity was detected at the population level that might be the cause for its vulnerability. There was no significant relationship between genetic and geographical distances, while a significant correlation existed between genetic and environmental distances. Among nineteen climate variables, Annual Mean Temperature (bio1), Mean Diurnal Range (bio2), Isothermality (bio3), Temperature Seasonality (bio4), Precipitation of Wettest Month (bio13), Precipitation Seasonality (bio15), and Precipitation of Warmest Quarter (bio18) could explain the substantial levels of genetic variation (> 40%) in this species. The A. ginnala populations were isolated into multi-subpopulations by the heterogeneous climate conditions, which subsequently promoted the genetic divergence. Climatic heterogeneity played an important role in the pattern of genetic differentiation and population distribution of A. ginnala across a relatively wide range in Northern China. These would provide some clues for the conservation and management of this vulnerable species.
Collapse
Affiliation(s)
- Hang Ye
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Jiahui Wu
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China.,Changzhi University, Changzhi, 046011, Shanxi, China
| | - Zhi Wang
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Huimin Hou
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Yue Gao
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Wei Han
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China
| | - Wenming Ru
- Changzhi University, Changzhi, 046011, Shanxi, China.
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, NS, B3H3C3, Canada.
| | - Yiling Wang
- College of Life Science, Shanxi Normal University, Linfen, 041000, Shanxi, China.
| |
Collapse
|
9
|
Genetic Structure of Wild Germplasm of Macadamia: Species Assignment, Diversity and Phylogeographic Relationships. PLANTS 2020; 9:plants9060714. [PMID: 32503327 PMCID: PMC7355489 DOI: 10.3390/plants9060714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 11/25/2022]
Abstract
Macadamia is an Australian native rainforest tree that has been domesticated and traded internationally for its premium nuts. Common cultivars rely upon a limited gene pool that has exploited only two of the four species. Introducing a more diverse germplasm will broaden the genetic base for future crop improvement and better adaptation for changing environments. This study investigated the genetic structure of 302 accessions of wild germplasm using 2872 SNP and 8415 silicoDArT markers. Structure analysis and principal coordinate analysis (PCoA) assigned the 302 accessions into four distinct groups: (i) Macadamia integrifolia, (ii) M. tetraphylla, and (iii) M. jansenii and M. ternifolia, and (iv) admixtures or hybrids. Assignment of the four species matched well with previous characterisations, except for one M. integrifolia and four M. tetraphylla accessions. Using SNP markers, 94 previously unidentified accessions were assigned into the four distinct groups. Finally, 287 accessions were identified as pure examples of one of the four species and 15 as hybrids of M. integrifolia and M. tetraphylla. The admixed accessions showed the highest genetic diversity followed by M. integrifolia, while M. ternifolia and M. jansenii accessions were the least diverse. Mantel test analysis showed a significant correlation between genetic and geographic distance for M. integrifolia (r = 0.51, p = 0.05) and a positive but not significant correlation for M. tetraphylla (r = 0.45, p = 0.06). This study provides a population genetics overview of macadamia germplasm as a background for a conservation strategy and provides directions for future macadamia breeding.
Collapse
|
10
|
Tang YM, Xiao L, Iqbal Y, Liao JF, Xiao LQ, Yi ZL, She CW. Molecular cytogenetic characterization and phylogenetic analysis of four Miscanthus species (Poaceae). COMPARATIVE CYTOGENETICS 2019; 13:211-230. [PMID: 31428293 PMCID: PMC6697684 DOI: 10.3897/compcytogen.v13i3.35346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Chromosomes of four Miscanthus (Andersson, 1855) species including M. sinensis (Andersson, 1855), M. floridulus (Schumann & Lauterb, 1901), M. sacchariflorus (Hackel, 1882) and M. lutarioriparius (Chen & Renvoize, 2005) were analyzed using sequentially combined PI and DAPI (CPD) staining and fluorescence in situ hybridization (FISH) with 45S rDNA probe. To elucidate the phylogenetic relationship among the four Miscanthus species, the homology of repetitive sequences among the four species was analyzed by comparative genomic in situ hybridization (cGISH). Subsequently four Miscanthus species were clustered based on the internal transcribed spacer (ITS) of 45S rDNA. Molecular cytogenetic karyotypes of the four Miscanthus species were established for the first time using chromosome measurements, fluorochrome bands and 45S rDNA FISH signals, which will provide a cytogenetic tool for the identification of these four species. All the four have the karyotype formula of Miscanthus species, which is 2n = 2x = 38 = 34m(2SAT) + 4sm, and one pair of 45S rDNA sites. The latter were shown as strong red bands by CPD staining. A non-rDNA CPD band emerged in M. floridulus and some blue DAPI bands appeared in M. sinensis and M. floridulus. The hybridization signals of M. floridulus genomic DNA to the chromosomes of M. sinensis and M. lutarioriparius genomic DNA to the chromosomes of M. sacchariflorus were stronger and more evenly distributed than other combinations. Molecular phylogenetic trees showed that M. sinensis and M. floridulus were closest relatives, and M. sacchariflorus and M. lutarioriparius were also closely related. These findings were consistent with the phylogenetic relationships inferred from the cGISH patterns.
Collapse
Affiliation(s)
- Yan-Mei Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Liang Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Yasir Iqbal
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Jian-Feng Liao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Long-Qian Xiao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Zi-Li Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, ChinaHunan Agricultural UniversityChangshaChina
| | - Chao-Wen She
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan 418008, ChinaHuaihua UniversityHuaihuaChina
| |
Collapse
|
11
|
Safari H, Zebarjadi A, Kahrizi D, Jafari AA. The study of inter-specific relationships of Bromus genus based on SCoT and ISSR molecular markers. Mol Biol Rep 2019; 46:5209-5223. [PMID: 31313131 DOI: 10.1007/s11033-019-04978-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
The genus of Bromus is one of the most important collection of rangeland plants, which are distributed in a wide range of natural areas of Iran. Interspecific relationships were evaluated in 90 accessions of 18 Bromus species based on 15 ISSR and 15 SCoT primers. SCoT markers separated the accessions better than ISSR marker. In addition, there was a high interspecific diversity between surveying germplasm. The sections of Bromus genus completely separated based on DNA molecular markers. SCoT markers could separate the accessions in each species. The primers of SC5 and SC35 from SCoT marker and UBC861, UBC857 and UBC844 primers from ISSR marker were identified as the best primers in revealing of genetic diversity between accessions. The sections of Ceratochloa, Genea, Pnigma and Bromus were monophyletic and were placed in one cluster. The section Bromus had a direct relationship with section Genea. In other words, section Ceratochloa has a direct relationship with Pnigma. B. tectorum and B. sericeus. B. sterilis had the most distance with other species in section Genea. B. squarrosus and B. japonicus had the most similarity and B. briziformis with B. danthoniae and B. scoparius with B. rechingeri had a moderate relationship in section Bromus. B. tomentosus and B. persicus had the highest similarity and B. riparius with B. biebersteinii and B. tomentellus with B. inermis had a moderate similarity in section Pnigma.
Collapse
Affiliation(s)
- Hooshmand Safari
- Department of Agronomy and Plant Breeding, Faculty of Science and Agricultural Engineering, Razi University, Kermanshah, Iran.,Faculty Member of Research Department of Forests and Rangelands, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| | - Alireza Zebarjadi
- Department of Agronomy and Plant Breeding, Faculty of Science and Agricultural Engineering, Razi University, Kermanshah, Iran.
| | - Danial Kahrizi
- Department of Agronomy and Plant Breeding, Faculty of Science and Agricultural Engineering, Razi University, Kermanshah, Iran
| | - Ali Ashraf Jafari
- Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|