1
|
Li H, Zhu X, Wang J, Wei Y, Nai F, Yu H, Wang X. Unraveling differential characteristics and mechanisms of nitrogen uptake in wheat cultivars with varied nitrogen use efficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108278. [PMID: 38147707 DOI: 10.1016/j.plaphy.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/26/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Nitrogen uptake is crucial to wheat nitrogen use efficiency (NUE). The study's findings indicate that both high- and low-NUE cultivars exhibited highest nitrogen uptake efficiency (NupE) under 0.2 mM nitrogen. Under 2 mM nitrogen, their NupEs decrease significantly, while uptakes to NO3- were notably higher than that of NH4+. Strikingly, high-NUE cultivars exhibited a significantly higher NH4+ uptake rate than low NUE cultivars, resulting in a marked improvement in their ability to take up nitrogen. The NUEs of the cultivars with 5 mM nitrogen were almost half that of 2 mM nitrogen. NO3- uptake primarily occurred in the mature zone of roots, while NH4+ uptake took place in the root tip meristem and elongation zones. Notably, the NH4+ uptake in root tip meristematic zone of high-NUE cultivar was significantly higher than that of low NUE cultivar. Furthermore, the NO3- uptake of high-NUE cultivar in the root mature zone was significantly higher than that of low-NUE cultivar under 2 mM nitrogen. These findings were consistent with the significantly higher expression levels of TaAMT in root tip and of TaNRT in root mature area of high-NUE cultivar compared to low-NUE cultivar, respectively, enabling efficient absorption of NO3- and NH4+ and transport of NO3- to shoot. The high-NUE cultivars showed elevated expression of amino acid transporters further promoting nitrogen uptake, and conversion of nitrogen into ureides and amino acids further facilitated inorganic nitrogen uptake by roots. The differential findings offer valuable insights into novel variety breeding of high NUE in the future.
Collapse
Affiliation(s)
- Huiqiang Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China; Research and Experiment Station of Nitrogen and Phosphorus Loss in Farmland of the Yellow River Basin in Henan Province, Zhengzhou 450000, China
| | - Xiaobo Zhu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Junjun Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yihao Wei
- Research and Experiment Station of Nitrogen and Phosphorus Loss in Farmland of the Yellow River Basin in Henan Province, Zhengzhou 450000, China
| | - Furong Nai
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China; Research and Experiment Station of Nitrogen and Phosphorus Loss in Farmland of the Yellow River Basin in Henan Province, Zhengzhou 450000, China.
| | - Xiaochun Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China; State Key Laboratory of Wheat and Maize Crop Science in China, Henan Agriculture University, Zhengzhou 450000, China; Research and Experiment Station of Nitrogen and Phosphorus Loss in Farmland of the Yellow River Basin in Henan Province, Zhengzhou 450000, China.
| |
Collapse
|
2
|
Peng Y, Yuan Y, Chang W, Zheng L, Ma W, Ren H, Liu P, Zhu L, Su J, Ma F, Li M, Ma B. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1231-1242. [PMID: 37219375 DOI: 10.1111/tpj.16314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Malic acid is a major organic acid component of apples and a crucial determinant of fruit organoleptic quality. A candidate gene for malic acid content, designated MdMa1, was previously identified in the Ma locus, which is a major quantitative trait locus (QTL) for apple fruit acidity located on the linkage group 16. Region-based association mapping to detect candidate genes in the Ma locus identified MdMa1 and an additional MdMYB21 gene putatively associated with malic acid. MdMYB21 was significantly associated with fruit malic acid content, accounting for ~7.48% of the observed phenotypic variation in the apple germplasm collection. Analyses of transgenic apple calli, fruits and tomatoes demonstrated that MdMYB21 negatively regulated malic acid accumulation. The apple fruit acidity-related MdMa1 and its tomato ortholog, SlALMT9, exhibited lower expression profiles in apple calli, mature fruits and tomatoes in which MdMYB21 was overexpressed, compared with their corresponding wild-type variety. MdMYB21 directly binds to the MdMa1 promoter and represses its expression. Interestingly, a 2-bp variation in the MdMYB21 promoter region altered its expression and regulation of its target gene, MdMa1, expression. Our findings not only demonstrate the efficiency of integrating QTL and association mapping in the identification of candidate genes controlling complex traits in apples, but also provide insights into the complex regulatory mechanism of fruit malic acid accumulation.
Collapse
Affiliation(s)
- Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenjing Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hang Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peipei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Su
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Abdi H, Alipour H, Bernousi I, Jafarzadeh J, Rodrigues PC. Identification of novel putative alleles related to important agronomic traits of wheat using robust strategies in GWAS. Sci Rep 2023; 13:9927. [PMID: 37336905 DOI: 10.1038/s41598-023-36134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
Principal component analysis (PCA) is widely used in various genetics studies. In this study, the role of classical PCA (cPCA) and robust PCA (rPCA) was evaluated explicitly in genome-wide association studies (GWAS). We evaluated 294 wheat genotypes under well-watered and rain-fed, focusing on spike traits. First, we showed that some phenotypic and genotypic observations could be outliers based on cPCA and different rPCA algorithms (Proj, Grid, Hubert, and Locantore). Hubert's method provided a better approach to identifying outliers, which helped to understand the nature of these samples. These outliers led to the deviation of the heritability of traits from the actual value. Then, we performed GWAS with 36,000 single nucleotide polymorphisms (SNPs) based on the traditional approach and two robust strategies. In the conventional approach and using the first three components of cPCA as population structure, 184 and 139 marker-trait associations (MTAs) were identified for five traits in well-watered and rain-fed environments, respectively. In the first robust strategy and when rPCA was used as population structure in GWAS, we observed that the Hubert and Grid methods identified new MTAs, especially for yield and spike weight on chromosomes 7A and 6B. In the second strategy, we followed the classical and robust principal component-based GWAS, where the first two PCs obtained from phenotypic variables were used instead of traits. In the recent strategy, despite the similarity between the methods, some new MTAs were identified that can be considered pleiotropic. Hubert's method provided a better linear combination of traits because it had the most MTAs in common with the traditional approach. Newly identified SNPs, including rs19833 (5B) and rs48316 (2B), were annotated with important genes with vital biological processes and molecular functions. The approaches presented in this study can reduce the misleading GWAS results caused by the adverse effect of outlier observations.
Collapse
Affiliation(s)
- Hossein Abdi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Iraj Bernousi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Jafar Jafarzadeh
- Dryland Agricultural Research Institute (DARI), Agriculture Research, Education and Extension Organization (AREEO), Maragheh, Iran
| | | |
Collapse
|
4
|
Sharma N, Madan B, Khan MS, Sandhu KS, Raghuram N. Weighted gene co-expression network analysis of nitrogen (N)-responsive genes and the putative role of G-quadruplexes in N use efficiency (NUE) in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1135675. [PMID: 37351205 PMCID: PMC10282765 DOI: 10.3389/fpls.2023.1135675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Rice is an important target to improve crop nitrogen (N) use efficiency (NUE), and the identification and shortlisting of the candidate genes are still in progress. We analyzed data from 16 published N-responsive transcriptomes/microarrays to identify, eight datasets that contained the maximum number of 3020 common genes, referred to as N-responsive genes. These include different classes of transcription factors, transporters, miRNA targets, kinases and events of post-translational modifications. A Weighted gene co-expression network analysis (WGCNA) with all the 3020 N-responsive genes revealed 15 co-expression modules and their annotated biological roles. Protein-protein interaction network analysis of the main module revealed the hub genes and their functional annotation revealed their involvement in the ubiquitin process. Further, the occurrences of G-quadruplex sequences were examined, which are known to play important roles in epigenetic regulation but are hitherto unknown in N-response/NUE. Out of the 3020 N-responsive genes studied, 2298 contained G-quadruplex sequences. We compared these N-responsive genes containing G-quadruplex sequences with the 3601 genes we previously identified as NUE-related (for being both N-responsive and yield-associated). This analysis revealed 389 (17%) NUE-related genes containing G-quadruplex sequences. These genes may be involved in the epigenetic regulation of NUE, while the rest of the 83% (1811) genes may regulate NUE through genetic mechanisms and/or other epigenetic means besides G-quadruplexes. A few potentially important genes/processes identified as associated with NUE were experimentally validated in a pair of rice genotypes contrasting for NUE. The results from the WGCNA and G4 sequence analysis of N-responsive genes helped identify and shortlist six genes as candidates to improve NUE. Further, the hitherto unavailable segregation of genetic and epigenetic gene targets could aid in informed interventions through genetic and epigenetic means of crop improvement.
Collapse
Affiliation(s)
- Narendra Sharma
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Bhumika Madan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - M. Suhail Khan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Kuljeet S. Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) - Mohali, Nagar, Punjab, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
5
|
Singh L, Dhillon GS, Kaur S, Dhaliwal SK, Kaur A, Malik P, Kumar A, Gill RK, Kaur S. Genome-wide Association Study for Yield and Yield-Related Traits in Diverse Blackgram Panel (Vigna mungo L. Hepper) Reveals Novel Putative Alleles for Future Breeding Programs. Front Genet 2022; 13:849016. [PMID: 35899191 PMCID: PMC9310006 DOI: 10.3389/fgene.2022.849016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Blackgram (Vigna mungo L. Hepper) is an important tropical and sub-tropical short-duration legume that is rich in dietary protein and micronutrients. Producing high-yielding blackgram varieties is hampered by insufficient genetic variability, absence of suitable ideotypes, low harvest index and susceptibility to biotic-abiotic stresses. Seed yield, a complex trait resulting from the expression and interaction of multiple genes, necessitates the evaluation of diverse germplasm for the identification of novel yield contributing traits. Henceforth, a panel of 100 blackgram genotypes was evaluated at two locations (Ludhiana and Gurdaspur) across two seasons (Spring 2019 and Spring 2020) for 14 different yield related traits. A wide range of variability, high broad-sense heritability and a high correlation of grain yield were observed for 12 out of 14 traits studied among all environments. Investigation of population structure in the panel using a set of 4,623 filtered SNPs led to identification of four sub-populations based on ad-hoc delta K and Cross entropy value. Using Farm CPU model and Mixed Linear Model algorithms, a total of 49 significant SNP associations representing 42 QTLs were identified. Allelic effects were found to be statistically significant at 37 out of 42 QTLs and 50 known candidate genes were identified in 24 of QTLs.
Collapse
Affiliation(s)
- Lovejit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Sarabjit Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Satinder Kaur,
| |
Collapse
|
6
|
Karunarathne SD, Han Y, Zhang XQ, Dang VH, Angessa TT, Li C. Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:47. [PMID: 37309383 PMCID: PMC10236044 DOI: 10.1007/s11032-021-01239-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is one of the most important macronutrients for crop growth and development. Large amounts of N fertilizers are applied exogenously to improve grain yield and quality, which has led to environmental pollution and high cost of production. Therefore, improvement of N use efficiency (NUE) is a very important aspect for sustainable agriculture. Here, a pilot experiment was firstly conducted with a set of barley genotypes with confirmed NUE to validate the fast NUE screening, using chlorate as an analogue to nitrate. High NUE genotypes were susceptible to chlorate-induced toxicity whereas the low NUE genotypes were tolerant. A total of 180 barley RILs derived from four parents (Compass, GrangeR, Lockyer and La Trobe) were further screened for NUE. Leaf chlorosis induced by chlorate toxicity was the key parameter observed which was later related to low-N tolerance of the RILs. There was a distinct variation in chlorate susceptibility of the RILs with leaf chlorosis in the oldest leaf ranging from 10 to 80%. A genome-wide association study (GWAS) identified 9 significant marker-trait associations (MTAs) conferring high chlorate sensitivity on chromosomes 2H (2), 3H (1), 4H (4), 5H (1) and Un (1). Genes flanking with these markers were retrieved as potential targets for genetic improvement of NUE. Genes encoding Ferredoxin 3, leucine-rich receptor-like protein kinase family protein and receptor kinase are responsive to N stress. MTA4H5468 which exhibits concordance with high NUE phenotype can further be explored under different genetic backgrounds and successfully applied in marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01239-8.
Collapse
Affiliation(s)
- Sakura D. Karunarathne
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151 Australia
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Viet Hoang Dang
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Tefera Tolera Angessa
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150 Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150 Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151 Australia
| |
Collapse
|
7
|
Guerra FP, Yáñez A, Matus I, del Pozo A. Genome-Wide Association of Stem Carbohydrate Accumulation and Remobilization during Grain Growth in Bread Wheat (Triticum aestivum L.) in Mediterranean Environments. PLANTS 2021; 10:plants10030539. [PMID: 33809230 PMCID: PMC8001439 DOI: 10.3390/plants10030539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Water deficit represents an important challenge for wheat production in many regions of the world. Accumulation and remobilization of water-soluble carbohydrates (WSCs) in stems are part of the physiological responses regulated by plants to cope with water stress and, in turn, determine grain yield (GY). The genetic mechanisms underlying the variation in WSC are only partially understood. In this study, we aimed to identify Single Nucleotide Polymorphism (SNP) markers that account for variation in a suite of WSC and GY, evaluated in 225 cultivars and advanced lines of spring wheat. These genotypes were established in two sites in the Mediterranean region of Central Chile, under water-limited and full irrigation conditions, and assessed in two growing seasons, namely anthesis and maturity growth periods. A genome-wide association study (GWAS) was performed by using 3243 SNP markers. Genetic variance accounted for 5 to 52% of phenotypic variation of the assessed traits. A rapid linkage disequilibrium decay was observed across chromosomes (r2 ≤ 0.2 at 2.52 kbp). Marker-trait association tests identified 96 SNPs related to stem weight (SW), WSCs, and GY, among other traits, at the different sites, growing seasons, and growth periods. The percentage of SNPs that were part of the gene-coding regions was 34%. Most of these genes are involved in the defensive response to drought and biotic stress. A complimentary analysis detected significant effects of different haplotypes on WSC and SW, in anthesis and maturity. Our results evidence both genetic and environmental influence on WSC dynamics in spring wheat. At the same time, they provide a series of markers suitable for supporting assisted selection approaches and functional characterization of genes.
Collapse
Affiliation(s)
- Fernando P. Guerra
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile;
| | - Alejandra Yáñez
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile;
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
| | - Iván Matus
- Centro Regional de Investigación Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3780000, Chile;
| | - Alejandro del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile;
- Correspondence: ; Tel.: +56-71-2200-223
| |
Collapse
|
8
|
Kong L, Zhang Y, Du W, Xia H, Fan S, Zhang B. Signaling Responses to N Starvation: Focusing on Wheat and Filling the Putative Gaps With Findings Obtained in Other Plants. A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:656696. [PMID: 34135921 PMCID: PMC8200679 DOI: 10.3389/fpls.2021.656696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 05/16/2023]
Abstract
Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis. Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.
Collapse
Affiliation(s)
- Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wanying Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Bin Zhang,
| |
Collapse
|
9
|
Kumari S, Sharma N, Raghuram N. Meta-Analysis of Yield-Related and N-Responsive Genes Reveals Chromosomal Hotspots, Key Processes and Candidate Genes for Nitrogen-Use Efficiency in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:627955. [PMID: 34168661 PMCID: PMC8217879 DOI: 10.3389/fpls.2021.627955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/04/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen-use efficiency (NUE) is a function of N-response and yield that is controlled by many genes and phenotypic parameters that are poorly characterized. This study compiled all known yield-related genes in rice and mined them from the N-responsive microarray data to find 1,064 NUE-related genes. Many of them are novel genes hitherto unreported as related to NUE, including 80 transporters, 235 transcription factors (TFs), 44 MicroRNAs (miRNAs), 91 kinases, and 8 phosphatases. They were further shortlisted to 62 NUE-candidate genes following hierarchical methods, including quantitative trait locus (QTL) co-localization, functional evaluation in the literature, and protein-protein interactions (PPIs). They were localized to chromosomes 1, 3, 5, and 9, of which chromosome 1 with 26 genes emerged as a hotspot for NUE spanning 81% of the chromosomes. Further, co-localization of the NUE genes on NUE-QTLs resolved differences in the earlier studies that relied mainly on N-responsive genes regardless of their role in yield. Functional annotations and PPIs for all the 1,064 NUE-related genes and also the shortlisted 62 candidates revealed transcription, redox, phosphorylation, transport, development, metabolism, photosynthesis, water deprivation, and hormonal and stomatal function among the prominent processes. In silico expression analysis confirmed differential expression of the 62 NUE-candidate genes in a tissue/stage-specific manner. Experimental validation in two contrasting genotypes revealed that high NUE rice shows better photosynthetic performance, transpiration efficiency and internal water-use efficiency in comparison to low NUE rice. Feature Selection Analysis independently identified one-third of the common genes at every stage of hierarchical shortlisting, offering 6 priority targets to validate for improving the crop NUE.
Collapse
|
10
|
Karunarathne SD, Han Y, Zhang XQ, Zhou G, Hill CB, Chen K, Angessa T, Li C. Genome-Wide Association Study and Identification of Candidate Genes for Nitrogen Use Efficiency in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:571912. [PMID: 33013994 PMCID: PMC7500209 DOI: 10.3389/fpls.2020.571912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/18/2020] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) fertilizer is largely responsible for barley grain yield potential and quality, yet excessive application leads to environmental pollution and high production costs. Therefore, efficient use of N is fundamental for sustainable agriculture. In the present study, we investigated the performance of 282 barley accessions through hydroponic screening using optimal and low NH4NO3 treatments. Low-N treatment led to an average shoot dry weight reduction of 50%, but there were significant genotypic differences among the accessions. Approximately 20% of the genotypes showed high (>75%) relative shoot dry weight under low-N treatment and were classified as low-N tolerant, whereas 20% were low-N sensitive (≤55%). Low-N tolerant accessions exhibited well-developed root systems with an average increase of 60% in relative root dry weight to facilitate more N absorption. A genome-wide association study (GWAS) identified 66 significant marker trait associations (MTAs) conferring high nitrogen use efficiency, four of which were stable across experiments. These four MTAs were located on chromosomes 1H(1), 3H(1), and 7H(2) and were associated with relative shoot length, relative shoot and root dry weight. Genes corresponding to the significant MTAs were retrieved as candidate genes, including members of the asparagine synthetase gene family, several transcription factor families, protein kinases, and nitrate transporters. Most importantly, the high-affinity nitrate transporter 2.7 (HvNRT2.7) was identified as a promising candidate on 7H for root and shoot dry weight. The identified candidate genes provide new insights into our understanding of the molecular mechanisms driving nitrogen use efficiency in barley and represent potential targets for genetic improvement.
Collapse
Affiliation(s)
- Sakura D Karunarathne
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| | - Camilla B Hill
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Kefei Chen
- SAGI West, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Tefera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|