1
|
Wang C, Barratt CLR, Blithe DL. Contraceptive efficacy: Determining the threshold for effective suppression based on sperm concentration, motility, and morphology. Andrology 2024; 12:1574-1584. [PMID: 39031534 DOI: 10.1111/andr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
INTRODCTION Human spermatogenesis is a complex process that transforms spermatogonial stem cells through mitosis and meiosis to spermatozoa. Testosterone is the key regulator of the terminal stages of meiosis, adherence of spermatids to Sertoli cells, and spermiation. Follicle-stimulating hormone (FSH) may be required for early spermatogenesis and is important for maintaining normal spermatogenesis in men. Hormonal contraception suppresses FSH, luteinizing hormone, and intratesticular testosterone concentration, resulting in marked suppression of sperm output. RESULTS Clinical trials using testosterone alone or testosterone plus progestin demonstrate that sustained suppression of sperm concentration to ≤1 million/mL is sufficient to prevent pregnancy in the female partner. New agents that target spermatogenesis could use this as a target for contraceptive efficacy while others that block sperm function or transport may require a lower threshold. When sperm concentrations are suppressed to such low levels, measurement of sperm motility and morphology is technically difficult and unnecessary. With current data from fertile and infertile men, it is not possible to establish a lower limit of sperm motility or percent normal morphology that equates to the prevention of conception. New compounds that decrease sperm motility or alter sperm morphology may need to demonstrate a complete absence of sperm motility or altered morphology in all spermatozoa in the ejaculate. Sperm function tests may be useful depending on the mechanism of action of each new compound. CONCLUSION Monitoring of sperm surrogate markers to ensure effective contraception relies on laboratories experienced in semen analyses. The development of at-home tests to assess sperm parameters has progressed rapidly. Some tests have been assessed in clinical trials and approved by regulatory agencies for at-home use for fertility assessment. However, caution must be exercised in using these tests as many have not been rigorously validated against semen parameters measured in laboratories by trained technologists using standardized tests defined in the World Health Organization Semen Manual.
Collapse
Affiliation(s)
- Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Christopher L R Barratt
- Division of Systems and Cellular Medicine, Medical School, Ninewells Hospital, University of Dundee, Dundee, Scotland
| | - Diana L Blithe
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomater Sci Eng 2023; 9:62-84. [PMID: 36541361 DOI: 10.1021/acsbiomaterials.2c01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Forecasting the consequence of nanoparticles (NPs) and therapeutically significant molecules before materializing for human clinical trials is a mainstay for drug delivery and screening processes. One of the noteworthy obstacles that has prevented the clinical translation of NP-based drug delivery systems and novel drugs is the lack of effective preclinical platforms. As a revolutionary technology, the organ-on-a-chip (OOC), a coalition of microfluidics and tissue engineering, has surfaced as an alternative to orthodox screening platforms. OOC technology recapitulates the structural and physiological features of human organs along with intercommunications between tissues on a chip. The current review discusses the concept of microfluidics and confers cutting-edge fabrication processes for chip designing. We also outlined the advantages of microfluidics in analyzing NPs in terms of characterization, transport, and degradation in biological systems. The review further elaborates the scope and research on translational nanomedicines in human reproductive organs (testis, placenta, uterus, and menstrual cycle) by taking the advantages offered by microfluidics and shedding light on their potential future implications. Finally, we accentuate the existing challenges for clinical translation and scale-up dynamics for microfluidics chips and emphasize its future perspectives.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College, Edinburgh EH9 3JG, United Kingdom
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do 52725, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| |
Collapse
|
3
|
Zhukov OB, Chernykh VB. Artificial intelligence in reproductive medicine. ANDROLOGY AND GENITAL SURGERY 2023. [DOI: 10.17650/2070-9781-2022-23-4-15-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- O. B. Zhukov
- Рeoples’ Friendship University of Russia (RUDN University); Association of Vascular Urologists and Reproductologists
| | - V. B. Chernykh
- Research Centre for Medical Genetics; N.I. Pirogov Russian National Research Medical University
| |
Collapse
|
4
|
Sarabi MR, Yigci D, Alseed MM, Mathyk BA, Ata B, Halicigil C, Tasoglu S. Disposable Paper-Based Microfluidics for Fertility Testing. iScience 2022; 25:104986. [PMID: 36105592 PMCID: PMC9465368 DOI: 10.1016/j.isci.2022.104986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fifteen percent of couples of reproductive age suffer from infertility globally and the burden of infertility disproportionately impacts residents of developing countries. Assisted reproductive technologies (ARTs), including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), have been successful in overcoming various reasons for infertility including borderline and severe male factor infertility which consists of 20%–30% of all infertile cases. Approximately half of male infertility cases stem from suboptimal sperm parameters. Therefore, healthy/normal sperm enrichment and sorting remains crucial in advancing reproductive medicine. Microfluidic technologies have emerged as promising tools to develop in-home rapid fertility tests and point-of-care (POC) diagnostic tools. Here, we review advancements in fabrication methods for paper-based microfluidic devices and their emerging fertility testing applications assessing sperm concentration, sperm motility, sperm DNA analysis, and other sperm functionalities, and provide a glimpse into future directions for paper-based fertility microfluidic systems. Paper-based technologies are emerging to develop in-home rapid fertility tests Fabrication methods for paper-based microfluidic devices are presented Emerging disposable paper-based fertility testing applications are reviewed
Collapse
Affiliation(s)
| | - Defne Yigci
- School of Medicine, Koç University, Istanbul, Türkiye 34450
| | - M. Munzer Alseed
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
| | - Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, HCA Healthcare, University of South Florida Morsani College of Medicine GME, Brandon Regional Hospital, Florida 33511, USA
| | - Baris Ata
- School of Medicine, Koç University, Istanbul, Türkiye 34450
- ART Fertility Clinics, Dubai, United Arab Emirates 337-1500
| | - Cihan Halicigil
- Yale School of Medicine, Yale University, Connecticut 06520, USA
| | - Savas Tasoglu
- School of Mechanical Engineering, Koç University, Istanbul, Türkiye 34450
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, Türkiye 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, Türkiye 34450
- Koç University Is Bank Artificial Intelligence Lab (KUIS AI Lab), Koç University, Istanbul, Türkiye 34450
- Corresponding author
| |
Collapse
|
5
|
Yaghoobi M, Azizi M, Mokhtare A, Javi F, Abbaspourrad A. Rheotaxis quality index: a new parameter that reveals male mammalian in vivo fertility and low sperm DNA fragmentation. LAB ON A CHIP 2022; 22:1486-1497. [PMID: 35319557 DOI: 10.1039/d2lc00150k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The female reproductive tract simultaneously guides and selects high-quality sperm using rheotaxis in mammalian species. Sperm quality, however, is traditionally evaluated only by their movement velocities and concentration using computer-assisted sperm analysis (CASA), which ignores sperm rheotaxis. Here, by mimicking the female reproductive tracts' dimensions and hydrodynamic features, a new method is introduced to quantify sperm rheotaxis ability for evaluating semen quality. The combination of our RHEOtaxis quaLity indEX (RHEOLEX) and motile sperm concentration is able to predict sperm fertility levels in artificial insemination at various shear rates within 5 minutes. This means that RHEOLEX could be a biomarker for determining male in vivo fertility, unlike conventional semen quality parameters which fail to provide statistically significant predictions. In addition, a high RHEOLEX is associated with a low DNA fragmentation index (DFI), showing that this new parameter is able to identify low-DFI samples. Not only does this work highlight the importance of rheotaxis in determining male in vivo fertility, but it also provides a solid benchmark for developing fast microfluidic devices for male fertility prediction as well as DFI. Last, the data imply that the female reproductive tract might use rheotaxis to keep sperm with fragmented DNA from reaching the fertilization site.
Collapse
Affiliation(s)
- Mohammad Yaghoobi
- Food Science Department, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Morteza Azizi
- Food Science Department, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Amir Mokhtare
- Food Science Department, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Farhad Javi
- Food Science Department, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Alireza Abbaspourrad
- Food Science Department, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Dimitriadis I, Zaninovic N, Badiola AC, Bormann CL. Artificial intelligence in the embryology laboratory: a review. Reprod Biomed Online 2021; 44:435-448. [PMID: 35027326 DOI: 10.1016/j.rbmo.2021.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
The goal of an IVF cycle is a healthy live-born baby. Despite the many advances in the field of assisted reproductive technologies, accurately predicting the outcome of an IVF cycle has yet to be achieved. One reason for this is the method of selecting an embryo for transfer. Morphological assessment of embryos is the traditional method of evaluating embryo quality and selecting which embryo to transfer. However, this subjective method of assessing embryos leads to inter- and intra-observer variability, resulting in less than optimal IVF success rates. To overcome this, it is common practice to transfer more than one embryo, potentially resulting in high-risk multiple pregnancies. Although time-lapse incubators and preimplantation genetic testing for aneuploidy have been introduced to help increase the chances of live birth, the outcomes remain less than ideal. Utilization of artificial intelligence (AI) has become increasingly popular in the medical field and is increasingly being leveraged in the embryology laboratory to help improve IVF outcomes. Many studies have been published investigating the use of AI as an unbiased, automated approach to embryo assessment. This review summarizes recent AI advancements in the embryology laboratory.
Collapse
Affiliation(s)
- Irene Dimitriadis
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA
| | - Nikica Zaninovic
- The Ronald O Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York NY, USA
| | - Alejandro Chavez Badiola
- New Hope Fertility Center, Av. Prado Norte 135, Lomas de Chapultepec, Mexico City, Mexico; IVF 2.0 LTD, 1 Liverpool Rd, Maghull, Merseyside, UK; School of Biosciences, University of Kent Kent, UK
| | - Charles L Bormann
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA.
| |
Collapse
|
7
|
Gonzalez D, Narasimman M, Best JC, Ory J, Ramasamy R. Clinical Update on Home Testing for Male Fertility. World J Mens Health 2021; 39:615-625. [PMID: 33474845 PMCID: PMC8443999 DOI: 10.5534/wjmh.200130] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 10/08/2020] [Indexed: 01/11/2023] Open
Abstract
Male factor infertility accounts for about 50% of the incidence of infertility in couples. In current practice, the men must attend a clinic or hospital facility to provide a semen analysis, which is key to the diagnosis of the male reproductive potential. However, many men are often embarrassed with the process and conventional semen analysis requires complex, labor intensive inspection with a microscope. To mitigate these problems, one of the solutions can be at-home semen analysis. In this review we examine the literature of currently available at home semen analysis test kits, describe their limitations, and compare them to the conventional lab-based methods.
Collapse
Affiliation(s)
- Daniel Gonzalez
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manish Narasimman
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jordan C Best
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jesse Ory
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
8
|
In vitro fertilization and andrology laboratory in 2030: expert visions. Fertil Steril 2021; 116:4-12. [PMID: 34148588 DOI: 10.1016/j.fertnstert.2021.05.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022]
Abstract
The aim of this article is to gather 9 thought leaders and their team members to present their ideas about the future of in vitro fertilization and the andrology laboratory. Although we have seen much progress and innovation in the laboratory over the years, there is still much to come, and this article looks at what these leaders think will be important in the future development of technology and processes in the laboratory.
Collapse
|
9
|
Abstract
Sperm selection is a clinical need for guided fertilization in men with low-quality semen. In this regard, microfluidics can provide an enabling platform for the precise manipulation and separation of high-quality sperm cells through applying various stimuli, including chemical agents, mechanical forces, and thermal gradients. In addition, microfluidic platforms can help to guide sperms and oocytes for controlled in vitro fertilization or sperm sorting using both passive and active methods. Herein, we present a detailed review of the use of various microfluidic methods for sorting and categorizing sperms for different applications. The advantages and disadvantages of each method are further discussed and future perspectives in the field are given.
Collapse
|
10
|
Zaninovic N, Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril 2021; 114:914-920. [PMID: 33160513 DOI: 10.1016/j.fertnstert.2020.09.157] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Embryo evaluation and selection embody the aggregate manifestation of the entire in vitro fertilization (IVF) process. It aims to choose the "best" embryos from the larger cohort of fertilized oocytes, the majority of which will be determined to be not viable either as a result of abnormal development or due to chromosomal imbalances. Indeed, it is generally acknowledged that even after embryo selection based on morphology, time-lapse microscopic photography, or embryo biopsy with preimplantation genetic testing, implantation rates in the human are difficult to predict. Our pursuit of enhancing embryo evaluation and selection, as well as increasing live birth rates, will require the adoption of novel technologies. Recently, several artificial intelligence (AI)-based methods have emerged as objective, standardized, and efficient tools for evaluating human embryos. Moreover, AI-based methods can be implemented for other clinical aspects of IVF, such as assessing patient reproductive potential and individualizing gonadotropin stimulation protocols. As AI has the capability to analyze "big" data, the ultimate goal will be to apply AI tools to the analysis of all embryological, clinical, and genetic data in an effort to provide patient-tailored treatments. In this chapter, we present an overview of existing AI technologies in reproductive medicine and envision their potential future applications in the field.
Collapse
Affiliation(s)
- Nikica Zaninovic
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York.
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
11
|
Onofre J, Geenen L, Cox A, Van Der Auwera I, Willendrup F, Andersen E, Campo R, Dhont N, Ombelet W. Simplified sperm testing devices: a possible tool to overcome lack of accessibility and inconsistency in male factor infertility diagnosis. An opportunity for low- and middle- income countries. Facts Views Vis Obgyn 2021; 13:79-93. [PMID: 33889864 PMCID: PMC8051200 DOI: 10.52054/fvvo.13.1.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background Manual semen assessment (MSA) is a key component in a male’s fertility assessment. Clinicians rely on it to make diagnostic and treatment decisions. When performed manually, this routine laboratory test is prone to variability due to human intervention which can lead to misdiagnosis and consequently over- or under- treatment. For standardisation, continuous training, quality control (QC) programs and pricy Computer-Assisted Sperm Analysis (CASA) systems have been proposed, yet, without resolving intra- and inter-laboratory variability. In response, promising simplified sperm testing devices, able to provide cost-effective point-of-care male infertility diagnosis are prospected as a plausible solution to resolve variability and increase access to sperm testing. Materials and methods A throughout literature research for semen testing, sperm analysis, smart-phone assisted semen analysis, ‘at-home’ semen testing, male infertility, infertility in developing countries, infertility in low- and middle-income countries (LMIC) and quantitative sperm analysis was performed. A total of 14 articles, specific to ‘at-home’ simplified sperm assessment, were included to treat the core subject. Results Continuous training and consistent QC, are sine qua none conditions to achieve accurate and comparable MSA. Compliance does not rule-out variability, nevertheless. Emerging simplified sperm assessment devices are an actual alternative to resolve the lack of standardisation and accessibility to sperm analysis. YO ® , SEEM ® , and ExSeed ® are commercially available, user-friendly smartphone-based devices which can accurately measure volume, sperm concentration (millions/ml) and total motile sperm count. More broadly, by cost-effectiveness, availability, accuracy and convenient application, these devices could effectively select patients for first-line artificial reproduction treatments such as intrauterine insemination. Conclusions Accuracy and cost-effectiveness make smart-phone based sperm testing devices a practical and realistic solution to overcome variability in MSA. Importantly, these tools represent an actual opportunity to standardise and improve male subfertility diagnosis and treatment, especially in LMIC. However, before clinical application is possible, guidelines, further testing with special attention on accuracy in washed sperm, availability, cost-benefit and reliability are required.
Collapse
Affiliation(s)
- J Onofre
- Genk Institute for Fertility Technology, Genk, Belgium.,Department of Obstetrics, Gynaecology and Infertility, Ziekenhuis Oost Limburg, Genk, Belgium
| | - L Geenen
- University of Hasselt, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - A Cox
- Department of Obstetrics, Gynaecology and Infertility, Ziekenhuis Oost Limburg, Genk, Belgium
| | - I Van Der Auwera
- Department of Obstetrics, Gynaecology and Infertility, Ziekenhuis Oost Limburg, Genk, Belgium
| | | | | | - R Campo
- Genk Institute for Fertility Technology, Genk, Belgium.,Department of Obstetrics, Gynaecology and Infertility, Ziekenhuis Oost Limburg, Genk, Belgium
| | - N Dhont
- Genk Institute for Fertility Technology, Genk, Belgium.,Department of Obstetrics, Gynaecology and Infertility, Ziekenhuis Oost Limburg, Genk, Belgium
| | - W Ombelet
- Genk Institute for Fertility Technology, Genk, Belgium.,Department of Obstetrics, Gynaecology and Infertility, Ziekenhuis Oost Limburg, Genk, Belgium
| |
Collapse
|
12
|
Ambar RF, Parekh N, Agarwal A. Recent advances and controversies in diagnosing and treating male infertility. Fac Rev 2020; 9:22. [PMID: 33659954 PMCID: PMC7886078 DOI: 10.12703/r/22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interest in male infertility has increased, as it plays an important role in up to 50% of couples struggling with infertility, which is an estimated 48.5 million couples globally. Despite recent advances, diagnosing and treating male infertility remain a significant clinical challenge owing to complex multifactorial pathways and the diversity of treatment options. This review will assess current controversial topics on male infertility such as the use of home-based semen testing, management of subclinical varicocele, and recent advances in the field of sperm proteomics.
Collapse
Affiliation(s)
- Rafael F Ambar
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
- Urology Department of Faculdade de Medicina do ABC - FMABC/Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo André, SP, Brazil
- Hope Clinic – Fertility Center, Sao Paulo, SP, Brazil
| | - Neel Parekh
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
13
|
Sperm quality in fish: Determinants and affecting factors. Theriogenology 2019; 135:94-108. [PMID: 31203093 DOI: 10.1016/j.theriogenology.2019.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 11/23/2022]
Abstract
Fish sperm quality assessment is helpful for optimizing production and for monitoring the environmental state. Sperm can be monitored relatively easy and, to date, various analyses have been applied and proven to be helpful in this task. Among them, sperm motility parameters such as sperm speed are one of the main performance traits during assisted fish reproduction. Apart from motility the sperm concentration, volume, and seminal plasma pH and osmolality are also frequently evaluated and are the main sperm quality indicators measured in fish sperm. However, other parameters also determine sperm fertilization potential. Recent knowledge reveals several additional parameters of high importance for sperm function. Among them are DNA integration, membrane stability, mitochondria status and enzymatic activity. Measuring all these parameters in fish sperm provides complex knowledge regarding male fertility and helps to improve broodstock maintenance protocols as well as gamete handling and fertilization processes. This review focuses on the presentation of the sperm quality measures for freshwater and marine species of the fish and provides information regarding recent methods of sperm quality evaluation.
Collapse
|