1
|
Ma L, Zhao X, A G, Song T, Wu M, Yan Z, Xiao M, Jiang W, Gao Y, Wang H, Chen Z, Zhang K, Xue J, Luo Y, Wang C, Xie Y, Chen Y, Gao G, Wang Q. Identification of DNA Methylation Differences in Pituitary Tissues of Sichuan White Geese Using Whole-Genome Bisulfite Sequencing (WGBS). BIOLOGY 2025; 14:154. [PMID: 40001922 PMCID: PMC11851436 DOI: 10.3390/biology14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
To explore the impact of epigenetic modifications on egg-laying traits in geese, we employed genome-wide bisulfite sequencing (WGBS) to analyze DNA methylation patterns in pituitary tissues of high-(HYP) and low-yield (LYP) Sichuan White geese. We achieved high-quality sequencing data (mean 19.09 Gb raw reads, 15.49 Gb clean reads, 79.1% unique mapping rate) with a bisulfite conversion efficiency of 99.88%. Comparative analysis revealed 2394 differentially methylated regions (DMRs) and 422 differentially methylated genes (DMGs) between HYP and LYP groups. We identified five key differentially methylated candidate genes (BMPER, INHA, NMBR, NK3R, and DSG2) linked to egg-laying traits in Sichuan White geese. Integrated GO and KEGG enrichment analysis conducted to explore the role of regulatory networks of epigenetic modification on egg-laying traits in Sichuan White geese identified multiple metabolic pathways associated with egg-laying traits (promoting egg transport, ovulation, and yolk protein synthesis and secretion), thus providing a basis for subsequent functional verification.
Collapse
Affiliation(s)
- Lin Ma
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Xianzhi Zhao
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Guoda A
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, China; (G.A.); (T.S.)
| | - Tongtong Song
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, China; (G.A.); (T.S.)
| | - Meng Wu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (M.W.); (Z.Y.); (M.X.); (W.J.); (Y.G.)
| | - Zhihao Yan
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (M.W.); (Z.Y.); (M.X.); (W.J.); (Y.G.)
| | - Min Xiao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (M.W.); (Z.Y.); (M.X.); (W.J.); (Y.G.)
| | - Wenbo Jiang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (M.W.); (Z.Y.); (M.X.); (W.J.); (Y.G.)
| | - Yixiao Gao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; (M.W.); (Z.Y.); (M.X.); (W.J.); (Y.G.)
| | - Haiwei Wang
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Zhuping Chen
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Keshan Zhang
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Jiajia Xue
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Yi Luo
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Chao Wang
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Youhui Xie
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Ying Chen
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Guangliang Gao
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| | - Qigui Wang
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China; (L.M.); (X.Z.); (H.W.); (Z.C.); (K.Z.); (J.X.); (Y.L.); (C.W.); (Y.X.); (Y.C.)
| |
Collapse
|
2
|
Zheng CY, Yu YX, Cao SY, Bai X. Epigenetics of inflammation in hypothalamus pituitary gonadal and neuroendocrine disorders. Semin Cell Dev Biol 2024; 154:340-345. [PMID: 37142487 DOI: 10.1016/j.semcdb.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
The hormone producing hypothalamus, pituitary and gonadal are arranged in hierarchy to form the hypothalamic-pituitary-gonadal axis (HPG axis). The axis is neuroendocrine in nature and releases hormones in response to the inputs from nervous systems. The axis maintains homeostasis and ensures smooth body functions, particularly those related to growth and reproduction. A deregulated HPG axis, such as observed under inflammation and other conditions, is therefore associated with several disorders such as polycystic ovary syndrome, functional hypothalamic amenorrhea etc. Several factors, both genetic as well as environmental, in addition to aging, obesity etc. affect HPG axis with resulting effects on puberty, sexual maturation and reproductive health. More research is now indicative of a role of epigenetics in mediating these HPG-affecting factors. Hypothalamus-secreted gonadotropin-releasing hormone is important for eventual release of sex hormones and it is subjected to several neuronal and epigenetic regulations. Gene promoter methylation as well as histone methylations and acetylations form the backbone of epigenetic regulation of HPG-axis, as the incoming reports suggest. Epigenetic events also mediate several feedback mechanisms within HPG axis and between HPG axis and the central nervous system. In addition, data is emerging for a role of non-coding RNAs, particularly the miRNAs, in regulation and normal functioning of HPG axis. Thus, the epigenetic interactions need better understanding to understand the functioning and regulation of HPG axis.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Shi-Yue Cao
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
3
|
Zhou X, Lei S, Li L, Xu T, Gu W, Ma F, Yang R. [Peripheral blood EMR3 gene methylation level is correlated with breast cancer in Chinese women]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1456-1463. [PMID: 34755660 DOI: 10.12122/j.issn.1673-4254.2021.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the association of methylation levels of C19orf57, MAP9, EMR3, NEK6 and PCOLCE2 genes in peripheral blood with breast cancer (BC) in Chinese women. METHODS We collected peripheral blood samples from 258 early-stage BC patients and 272 healthy women. Agena matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to quantitatively measure the methylation levels of CpG sites in the genes. The association between DNA methylation and BC was analyzed using a logistic regression model adjusted for covariants. Spearman's correlation analysis was performed to analyze the association between the gene methylation levels and age. The methylation levels of the genes in the BC patients with different clinical characteristics were investigated using non-parametric tests. RESULTS In stead of EMR3 gene hypermethylation as found in BC patients as found in the Caucasian population, EMR3 gene hypomethylation was found to correlate with BC in Chinese women, but this correlation was significant only in women beyond the age of 50 years (for every 10% reduction of the methylation level, EMR3_CpG_1: OR=1.40; EMR3_CpG_2: OR=2.31; EMR3_CpG_3: OR=2.76, P < 0.05). EMR3 methylation was not or was only weakly correlated with tumor stage, size, lymphatic metastasis, ER, PR, HER2, or Ki67. Our data did not show a correlation between C19orf57 methylation and BC. CONCLUSION Peripheral blood EMR3 gene hypomethylation is associated with BC in Chinese women, especially in those at an old age and in postmenopausal women.
Collapse
Affiliation(s)
- X Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - S Lei
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - L Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - T Xu
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, China
| | - W Gu
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, China
| | - F Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - R Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
4
|
Abstract
Animal and humans exposed to stress early in life are more likely to suffer from long-term behavioral, mental health, metabolic, immune, and cardiovascular health consequences. The hypothalamus plays a nodal role in programming, controlling, and regulating stress responses throughout the life course. Epigenetic reprogramming in the hippocampus and the hypothalamus play an important role in adapting genome function to experiences and exposures during the perinatal and early life periods and setting up stable phenotypic outcomes. Epigenetic programming during development enables one genome to express multiple cell type identities. The most proximal epigenetic mark to DNA is a covalent modification of the DNA itself by enzymatic addition of methyl moieties. Cell-type-specific DNA methylation profiles are generated during gestational development and define cell and tissue specific phenotypes. Programming of neuronal phenotypes and sex differences in the hypothalamus is achieved by developmentally timed rearrangement of DNA methylation profiles. Similarly, other stations in the life trajectory such as puberty and aging involve predictable and scheduled reorganization of DNA methylation profiles. DNA methylation and other epigenetic marks are critical for maintaining cell-type identity in the brain, across the body, and throughout life. Data that have emerged in the last 15 years suggest that like its role in defining cell-specific phenotype during development, DNA methylation might be involved in defining experiential identities, programming similar genes to perform differently in response to diverse experiential histories. Early life stress impact on lifelong phenotypes is proposed to be mediated by DNA methylation and other epigenetic marks. Epigenetic marks, as opposed to genetic mutations, are reversible by either pharmacological or behavioral strategies and therefore offer the potential for reversing or preventing disease including behavioral and mental health disorders. This chapter discusses data testing the hypothesis that DNA methylation modulations of the HPA axis mediate the impact of early life stress on lifelong behavioral and physical phenotypes.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Zhao Y, Tian M, Cheng Z, Wang J, Ren Z. DNA Methylation may be a testicular plateau adaptation in Tibetan pig. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1882465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yanling Zhao
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People’s Republic of China
| | - Mengfang Tian
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People’s Republic of China
| | - Zhipeng Cheng
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People’s Republic of China
| | - Jianzhou Wang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People’s Republic of China
| | - Zili Ren
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People’s Republic of China
| |
Collapse
|
6
|
S-Adenosine Methionine (SAMe) and Valproic Acid (VPA) as Epigenetic Modulators: Special Emphasis on their Interactions Affecting Nervous Tissue during Pregnancy. Int J Mol Sci 2020; 21:ijms21103721. [PMID: 32466248 PMCID: PMC7279375 DOI: 10.3390/ijms21103721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
S-adenosylmethionine (SAMe) is involved in many transmethylation reactions in most living organisms and is also required in the synthesis of several substances such as monoamine neurotransmitters and the N-methyl-D-aspartate (NMDA) receptor. Due to its important role as an epigenetic modulator, we discuss in some length the process of DNA methylation and demethylation and the critical periods of epigenetic modifications in the embryo, fetus, and thereafter. We also discuss the effects of SAMe deficiency and the attempts to use SAMe for therapeutic purposes such as the treatment of major depressive disorder, Alzheimer disease, and other neuropsychiatric disorders. SAMe is an approved food additive and as such is also used during pregnancy. Yet, there seems to scanty data on the possible effects of SAMe on the developing embryo and fetus. Valproic acid (VPA) is a well-tolerated and effective antiepileptic drug that is also used as a mood stabilizer. Due to its high teratogenicity, it is contraindicated in pregnancy. A major mechanism of its action is histone deacetylase inhibition, and therefore, it acts as an epigenetic modulator, mainly on the brain. This prompted clinical trials using VPA for additional indications i.e., treating degenerative brain disease such as Alzheimer disease, dementia, HIV, and even cancer. Therefore, we discuss the possible effects of VPA and SAMe on the conceptus and early postnatally, during periods of susceptibility to epigenetic modifications. VPA is also used as an inducer of autistic-like behavior in rodents and was found by us to modify gene expression when administered during the first postnatal week but not when administered to the pregnant dams on day 12 of gestation. In contrast, SAMe modified gene expression when administered on day 12 of pregnancy but not postnatally. If administered together, VPA prevented the changes in gene expression induced by prenatal SAMe administration, and SAMe prevented the gene expression changes and autistic-like behavior induced by early postnatal VPA. It is concluded that both VPA and SAMe are powerful epigenetic modifiers with antagonistic actions on the brain that will probably be used in the future more extensively for the treatment of a variety of epigenetic diseases of the nervous system.
Collapse
|
7
|
Livadas S, Chrousos GP. Molecular and Environmental Mechanisms Regulating Puberty Initiation: An Integrated Approach. Front Endocrinol (Lausanne) 2019; 10:828. [PMID: 31920956 PMCID: PMC6915095 DOI: 10.3389/fendo.2019.00828] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying the initiation of puberty, one of the cornerstones of human evolution, have not been fully elucidated as yet. However, recently, an accumulating body of evidence has helped unravel several critical aspects of the process. It is clear that a change in the pattern of pituitary gonadotropin secretion serves as a hormonal trigger for puberty induction. This change is directly guided by the hypothalamic GnRH pulse generation, a phenomenon regulated by the Kisspeptin-Neurokinin-Dynorphin (KNDy) system also in the hypothalamus. This represents the kisspeptin molecule, which is crucial in augmenting GnRH secretion at puberty, whose secretion is fine-tuned by the opposing signals neurokinin B and dynorphin. Recently, the novel kisspeptin inhibitory signal MKRN3 was described, whose role in puberty initiation provided further insight into the mechanistic aspects of pubertal onset. Furthermore, the description of higher inhibitory and stimulatory signals acting upstream of the KNDy neurons suggested that the trigger point of puberty is located upstream of the KNDy system and the GnRH pulse generator. However, the mechanism of pubertal onset should not be considered as an isolated closed loop system. On the contrary, it is influenced by such factors as adipose tissue, gastrointestinal function, adrenal androgen production, energy sensing, and physical and psychosocial stress. Also, fetal and early life stressful events, as well as exposure to endocrine disruptors, may play important roles in pubertal initiation, the latter primarily through epigenetic modifications. Here we present the available data in the field and attempt to provide an integrated view of this unique and crucial phenomenon.
Collapse
Affiliation(s)
- Sarantis Livadas
- Endocrine Unit, Metropolitan Hospital, Athens, Greece
- *Correspondence: Sarantis Livadas
| | - George P. Chrousos
- UNESCO Chair on Adolescent Health Care, University Research Institute of Maternal and Child Health and Precision Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
- George P. Chrousos
| |
Collapse
|