1
|
Ríos L, Sleeper MM, Danforth MD, Murphy HW, Kutinsky I, Rosas A, Bastir M, Gómez-Cambronero J, Sanjurjo R, Campens L, Rider O, Pastor F. The aorta in humans and African great apes, and cardiac output and metabolic levels in human evolution. Sci Rep 2023; 13:6841. [PMID: 37100851 PMCID: PMC10133235 DOI: 10.1038/s41598-023-33675-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Humans have a larger energy budget than great apes, allowing the combination of the metabolically expensive traits that define our life history. This budget is ultimately related to the cardiac output, the product of the blood pumped from the ventricle and the number of heart beats per minute, a measure of the blood available for the whole organism physiological activity. To show the relationship between cardiac output and energy expenditure in hominid evolution, we study a surrogate measure of cardiac output, the aortic root diameter, in humans and great apes. When compared to gorillas and chimpanzees, humans present an increased body mass adjusted aortic root diameter. We also use data from the literature to show that over the human lifespan, cardiac output and total energy expenditure follow almost identical trajectories, with a marked increase during the period of brain growth, and a plateau during most of the adult life. The limited variation of adjusted cardiac output with sex, age and physical activity supports the compensation model of energy expenditure in humans. Finally, we present a first study of cardiac output in the skeleton through the study of the aortic impression in the vertebral bodies of the spine. It is absent in great apes, and present in humans and Neanderthals, large-brained hominins with an extended life cycle. An increased adjusted cardiac output, underlying higher total energy expenditure, would have been a key process in human evolution.
Collapse
Affiliation(s)
- Luis Ríos
- Unit of Physical Anthropology, Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Universidad Complutense de Madrid, 28040, Madrid, Spain.
- Department of Physical Anthropology, Aranzadi Sciences Society, 20014, Donostia, Basque Country, Spain.
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006, Madrid, Spain.
| | - Meg M Sleeper
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, PO Box 100126, Gainesville, FL, 32610-0126, USA
| | - Marietta D Danforth
- Great Ape Heart Project, Detroit Zoological Society, 8450 W. 10 Mile Rd., Royal Oak, MI, 48067, USA
| | - Hayley Weston Murphy
- Great Ape Heart Project, Detroit Zoological Society, 8450 W. 10 Mile Rd., Royal Oak, MI, 48067, USA
| | - Ilana Kutinsky
- Oakland University William Beaumont School of Medicine, 586 Pioneer Drive, Rochester, MI, 48309, USA
| | - Antonio Rosas
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006, Madrid, Spain
| | - Markus Bastir
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006, Madrid, Spain
| | - José Gómez-Cambronero
- Unit of Physical Anthropology, Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ricardo Sanjurjo
- Unit of Physical Anthropology, Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Laurence Campens
- Cardiology Department, Ghent University Hospital, 9000, Ghent, Belgium
| | - Oliver Rider
- University of Oxford Centre for Cardiac Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Francisco Pastor
- Department of Anatomy and Radiology, University of Valladolid, 47005, Valladolid, Spain
| |
Collapse
|
2
|
Gonzalez-Garcia M, Barrero M, Maldonado D. Exercise Capacity, Ventilatory Response, and Gas Exchange in COPD Patients With Mild to Severe Obstruction Residing at High Altitude. Front Physiol 2021; 12:668144. [PMID: 34220533 PMCID: PMC8249805 DOI: 10.3389/fphys.2021.668144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background Exercise intolerance, desaturation, and dyspnea are common features in patients with chronic obstructive pulmonary disease (COPD). At altitude, the barometric pressure (BP) decreases, and therefore the inspired oxygen pressure and the partial pressure of arterial oxygen (PaO2) also decrease in healthy subjects and even more in patients with COPD. Most of the studies evaluating ventilation and arterial blood gas (ABG) during exercise in COPD patients have been conducted at sea level and in small populations of people ascending to high altitudes. Our objective was to compare exercise capacity, gas exchange, ventilatory alterations, and symptoms in COPD patients at the altitude of Bogotá (2,640 m), of all degrees of severity. Methods Measurement during a cardiopulmonary exercise test of oxygen consumption (VO2), minute ventilation (VE), tidal volume (VT), heart rate (HR), ventilatory equivalents of CO2 (VE/VCO2), inspiratory capacity (IC), end-tidal carbon dioxide tension (PETCO2), and ABG. For the comparison of the variables between the control subjects and the patients according to the GOLD stages, the non-parametric Kruskal–Wallis test or the one-way analysis of variance test was used. Results Eighty-one controls and 525 patients with COPD aged 67.5 ± 9.1 years were included. Compared with controls, COPD patients had lower VO2 and VE (p < 0.001) and higher VE/VCO2 (p = 0.001), A-aPO2, and VD/VT (p < 0.001). In COPD patients, PaO2 and saturation decreased, and delta IC (p = 0.004) and VT/IC increased (p = 0.002). These alterations were also seen in mild COPD and progressed with increasing severity of the obstruction. Conclusion The main findings of this study in COPD patients residing at high altitude were a progressive decrease in exercise capacity, increased dyspnea, dynamic hyperinflation, restrictive mechanical constraints, and gas exchange abnormalities during exercise, across GOLD stages 1–4. In patients with mild COPD, there were also lower exercise capacity and gas exchange alterations, with significant differences from controls. Compared with studies at sea level, because of the lower inspired oxygen pressure and the compensatory increase in ventilation, hypoxemia at rest and during exercise was more severe; PaCO2 and PETCO2 were lower; and VE/VO2 was higher.
Collapse
Affiliation(s)
- Mauricio Gonzalez-Garcia
- Pulmonary Function Testing Laboratory, Fundación Neumologica Colombiana, Bogotá, Colombia.,Faculty of Medicine, Universidad de La Sabana, Bogotá, Colombia
| | - Margarita Barrero
- Pulmonary Function Testing Laboratory, Fundación Neumologica Colombiana, Bogotá, Colombia
| | - Dario Maldonado
- Pulmonary Function Testing Laboratory, Fundación Neumologica Colombiana, Bogotá, Colombia
| |
Collapse
|