1
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
2
|
Tay WT, Court LN, Macfadyen S, Jacomb F, Vyskočilová S, Colvin J, De Barro PJ. A high-throughput amplicon sequencing approach for population-wide species diversity and composition survey. Mol Ecol Resour 2021; 22:1706-1724. [PMID: 34918473 DOI: 10.1111/1755-0998.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Management of agricultural pests requires an understanding of pest species diversity, their interactions with beneficial insects and spatial-temporal patterns of pest abundance. Invasive and agriculturally important insect pests can build up very high populations, especially in cropping landscapes. Traditionally, sampling effort for species identification involves small sample sizes and is labour intensive. Here, we describe a multi-primer high throughput sequencing (HTS) metabarcoding method and associated analytical workflow for a rapid, intensive, high-volume survey of pest species compositions. We demonstrate our method using the taxonomically challenging Bemisia pest cryptic species complex as examples. The whiteflies Bemisia including the 'tabaci' species are agriculturally important capable of vectoring diverse plant viruses that cause diseases and crop losses. Our multi-primer metabarcoding HTS amplicon approach simultaneously process high volumes of whitefly individuals, with efficiency to detect rare (i.e., 1%) test-species, while our improved whitefly primers for metabarcoding also detected beneficial hymenopteran parasitoid species from whitefly nymphs. Field-testing our redesigned Bemisia metabarcoding primer sets across the Tanzania, Uganda and Malawi cassava cultivation landscapes, we identified the sub-Saharan Africa 1 Bemisia putative species as the dominant pest species, with other cryptic Bemisia species being detected at various abundances. We also provide evidence that Bemisia species compositions can be affected by host crops and sampling techniques that target either nymphs or adults. Our multi-primer HTS metabarcoding method incorporated two over-lapping amplicons of 472bp and 518bp that spanned the entire 657bp 3' barcoding region for Bemisia, and is particularly suitable to molecular diagnostic surveys of this highly cryptic insect pest species complex that also typically exhibited high population densities in heavy crop infestation episodes. Our approach can be adopted to understand species biodiversity across landscapes, with broad implications for improving trans-boundary biosecurity preparedness, thus contributing to molecular ecological knowledge and the development of control strategies for high-density, cryptic, pest-species complexes.
Collapse
Affiliation(s)
- W T Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - L N Court
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - S Macfadyen
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - F Jacomb
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia
| | - S Vyskočilová
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT, 2601, Australia.,Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Maritime Kent, ME4 4TB, United Kingdom
| | - J Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham, Maritime Kent, ME4 4TB, United Kingdom
| | | |
Collapse
|
3
|
Suhag A, Yadav H, Chaudhary D, Subramanian S, Jaiwal R, Jaiwal PK. Biotechnological interventions for the sustainable management of a global pest, whitefly (Bemisia tabaci). INSECT SCIENCE 2021; 28:1228-1252. [PMID: 32696581 DOI: 10.1111/1744-7917.12853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Whiteflies (Bemisia tabaci) are polyphagous invasive hemipteran insects that cause serious losses of important crops by directly feeding on phloem sap and transmitting pathogenic viruses. These insects have emerged as a major threat to global agriculture and food security. Chemically synthesized insecticides are currently the only option to control whiteflies, but the ability of whiteflies to evolve resistance against insecticides has made the management of these insects very difficult. Natural host-plant resistance against whiteflies identified in some crop plants has not been exploited to a great extent. Genetic engineering approaches, such as transgenics and RNA interference (RNAi), are potentially useful for the control of whiteflies. Transgenic plants harboring insecticidal toxins/lectins developed via nuclear or chloroplast transformation are a promising vehicle for whitefly control. Double-stranded RNAs (dsRNAs) of several insect genes, delivered either through microinjection into the insect body cavity or orally via an artificial diet and transiently or stably expressed in transgenic plants, have controlled whiteflies in model plants and in some crops at the laboratory level, but not at the field level. In this review, we highlight the merits and demerits of each delivery method along with strategies for sustained delivery of dsRNAs via fungal entomopathogen/endosymbiont or nontransgenic RNAi approaches, foliar sprays, root absorption or nanocarriers as well as the factors affecting efficient RNAi and their biosafety issues. Genome sequencing and transcriptome studies of whitefly species are facilitating the selection of appropriate genes for RNAi and gene-editing technology for the efficient and resilient management of whiteflies and their transmitted viruses.
Collapse
Affiliation(s)
- Archna Suhag
- Department of Zoology, M.D. University, Rohtak, India
| | - Honey Yadav
- Centre for Biotechnology, M.D. University, Rohtak, India
| | | | - S Subramanian
- Division of Entomology, Indian Agriculture Research Institute, New Delhi, India
| | | | - Pawan K Jaiwal
- Centre for Biotechnology, M.D. University, Rohtak, India
| |
Collapse
|
4
|
Deep Sequencing of Small RNAs in the Whitefly Bemisia tabaci Reveals Novel MicroRNAs Potentially Associated with Begomovirus Acquisition and Transmission. INSECTS 2020; 11:insects11090562. [PMID: 32842525 PMCID: PMC7564577 DOI: 10.3390/insects11090562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Summary The whitefly (Bemisia tabaci), a notorious insect vector, transmits hundreds of viruses causing serious yield losses in a diverse food and fiber crops including beans, cassava, cotton, cucurbits, pepper, sweet potato and tomato, and results in billions of U.S. dollars of economic losses annually worldwide. To investigate the molecular mechanisms regulating gene expression in whitefly that is associated with begomovirus transmission, we conducted small RNA sequencing and compared the microRNA (miRNA) profiles between viruliferous whiteflies feeding on tomato plants infected with a begomovirus, tomato yellow leaf curl virus (TYLCV), and those whiteflies feeding on uninfected plants. We uncovered a comprehensive microRNA genetic regulatory system in whiteflies that may be involved in virus acquisition and transmission. Interestingly, correlating the expression profile of miRNAs and their target transcript expression in our earlier transcriptome study, we found miRNA expression was inversely correlated with predicted target gene expression in over 50% of all cases. This fundamental understanding will help identify new target sequences that could be used to improve RNA interference technology for whitefly control. These analyses could also serve as a model to study gene regulation in other systems involving arthropod transmission of viruses to plants and animals. Abstract The whitefly Bemisia tabaci (Gennadius) is a notorious insect vector that transmits hundreds of plant viruses, affecting food and fiber crops worldwide, and results in the equivalent of billions of U.S. dollars in crop loss annually. To gain a better understanding of the mechanism in virus transmission, we conducted deep sequencing of small RNAs on the whitefly B. tabaci MEAM1 (Middle East-Asia Minor 1) that fed on tomato plants infected with tomato yellow leaf curl virus (TYLCV). Overall, 160 miRNAs were identified, 66 of which were conserved and 94 were B. tabaci-specific. Among the B. tabaci-specific miRNAs, 67 were newly described in the present study. Two miRNAs, with predicted targets encoding a nuclear receptor (Bta05482) and a very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 2 (Bta10702), respectively, were differentially expressed in whiteflies that fed on TYLCV-infected versus uninfected plants. To better understand the regulatory effects of identified miRNAs and their target genes, we correlated expression profiles of miRNAs and their target transcripts and found that, interestingly, miRNA expression was inversely correlated with the expression of ~50% of the predicted target genes. These analyses could serve as a model to study gene regulation in other systems involving arthropod transmission of viruses to plants and animals.
Collapse
|
5
|
Mondal M, Brown JK, Flynt A. Exploiting somatic piRNAs in Bemisia tabaci enables novel gene silencing through RNA feeding. Life Sci Alliance 2020; 3:3/10/e202000731. [PMID: 32764103 PMCID: PMC7425214 DOI: 10.26508/lsa.202000731] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
RNAi usually relies on Dicer-produced siRNAs to induce gene silencing. In many arthropods, another type of RNAi is present in the soma—the piRNA pathway. This work finds exploiting this biology is a viable alternative for gene knockdown. RNAi promises to reshape pest control by being nontoxic, biodegradable, and species specific. However, due to the plastic nature of RNAi, there is a significant variability in responses. In this study, we investigate small RNA pathways and processing of ingested RNAi trigger molecules in a hemipteran plant pest, the whitefly Bemisia tabaci. Unlike Drosophila, where the paradigm for insect RNAi technology was established, whitefly has abundant somatic piwi-associated RNAs (piRNAs). Long regarded as germline restricted, piRNAs are common in the soma of many invertebrates. We sought to exploit this for a novel gene silencing approach. The main principle of piRNA biogenesis is the recruitment of target RNA fragments into the pathway. As such, we designed synthetic RNAs to possess complementarity to the loci we annotated. Following feeding of these exogenous piRNA triggers knockdown as effective as conventional siRNA-only approaches was observed. These results demonstrate a new approach for RNAi technology that could be applicable to dsRNA-recalcitrant pest species and could be fundamental to realizing insecticidal RNAi against pests.
Collapse
Affiliation(s)
- Mosharrof Mondal
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Alex Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
6
|
piRNA-Guided CRISPR-like Immunity in Eukaryotes. Trends Immunol 2019; 40:998-1010. [DOI: 10.1016/j.it.2019.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
|