1
|
Veiga A, Ramírez-Jiménez RA, Santos-Rosales V, García-González CA, Aguilar MR, Rojo L, Oliveira AL. Innovative Processing and Sterilization Techniques to Unlock the Potential of Silk Sericin for Biomedical Applications. Gels 2025; 11:114. [PMID: 39996657 PMCID: PMC11854797 DOI: 10.3390/gels11020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Silk sericin (SS), a by-product of the textile industry, has gained significant attention for its biomedical potential due to its biocompatibility and regenerative potential. However, the literature lacks information on SS processing methods and the resulting physicochemical properties. This study represents the first step in protocol optimization and standardization. In the present work, different processing techniques were studied and compared on SS extracted from boiling water: evaporation, rotary evaporation, lyophilization, and dialysis, which presented a recovery yield of approximately 27-32%. The goal was to find the most promising process to concentrate extracted SS solutions, and to ensure that the SS structure was highly preserved. As a result, a new cryo-lyophilization methodology was proposed. The proposed method allows for the preservation of the amorphous structure, which offers significant advantages including complete dissolution in water and PBS, an increase in storage stability, and the possibility of scaling-up, making it highly suitable for industrial and biomedical applications. The second part of the work focused on addressing another challenge in SS processing: efficient and non-destructive sterilization. Supercritical CO2 (scCO2) has been gaining momentum in the last years for sterilizing sensitive biopolymers and biological materials due to its non-toxicity and mild processing conditions. Thus, scCO2 technology was validated as a mild technique for the terminal sterilization of SS. In this way, it was possible to engineer a sequential cryo-lyophilization/scCO2 sterilization process which was able to preserve the original properties of this natural silk protein. Overall, we have valorized SS into a sterile, off-the-shelf, bioactive, and water-soluble material, with the potential to be used in the biomedical, pharmaceutical, or cosmetic industries.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, C. Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Rosa Ana Ramírez-Jiménez
- Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, C. Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Víctor Santos-Rosales
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos A. García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, C. Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, C. Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Ana L. Oliveira
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
2
|
Hemalatha T, Aarthy M, Sundarapandiyan A, Ayyadurai N. Bioengineered Silk Fibroin Hydrogel Reinforced with Collagen-Like Protein Chimeras for Improved Wound Healing. Macromol Biosci 2025; 25:e2400346. [PMID: 39422581 DOI: 10.1002/mabi.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Indexed: 10/19/2024]
Abstract
The study investigates the potentials of the rapid crosslinking hydrogel concoction comprising of natural silk fibroin (SF) and recombinant tailorable collagen-like protein with binding domains for wound repair. The formation of dityrosine crosslinks between the tyrosine moieties augments the formation of stable hydrogels, in the presence of the cytocompatible photo-initiator riboflavin and visible light. This uniquely engineered PASCH (Photo-activated silk fibroin and tailor-made collagen-like protein hydrogel) confers the key advantage of improved biological properties over the control hydrogels comprising only of SF. The physico-chemical characterization of the hydrogels with respect to crosslinking, modulus, and thermal stability delineates the ascendancy of PASCH 7:3 over other combinations. Furthermore, the hybrid protein hydrogel proves to be a favorable cellular matrix as it enhances cell adhesion, elongation, growth, and proliferation in vitro. Time-lapse microscopy studies reveal an enhanced wound closure in human endothelial cell monolayer (EA.hy926), while the gene expression studies portray the dynamic interplay of cytokines and growth factors in the wound milieu facilitating the repair and regeneration of cells, sculpted by the proteins. The results demonstrate the improved physical and biological properties of fabricated PASCH, depicting their synergism, and implying their competency for use in tissue engineering applications.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Ashokraj Sundarapandiyan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| |
Collapse
|
3
|
Ansari AI, Ahmad Sheikh N, Kumar N. Mechanical and in vitro study of 3D printed silk fibroin and bone-based composites biomaterials for bone implant application. Proc Inst Mech Eng H 2024; 238:774-792. [PMID: 39045911 DOI: 10.1177/09544119241259071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
When treating orthopaedic damage or illness and accidental fracture, bone grafting remains the gold standard of treatment. In cases where this approach does not seem achievable, bone tissue engineering can offer scaffolding as a substitute. Defective and fractured bone tissue is extracted and substituted with porous scaffold structures to aid in the process of tissue regeneration. 3D bioprinting has demonstrated enormous promise in recent years for producing scaffold structures with the necessary capabilities. In order to create composite biomaterial inks for 3D bioprinting, three different materials were combined such as silk fibroin, bone particles, and synthetic biopolymer poly (ε-caprolactone) (PCL). These biomaterials were used to fabricate the two composites scaffolds such as: silk fibroin + bovine bone (SFB) and silk fibroin + bovine bone + Polycaprolactone (SFBP). The biomechanical, structural, and biological elements of the manufactured composite scaffolds were characterized in order to determine their suitability as a possible biomaterial for the production of bone tissue. The in vitro bioactivity of the two composite scaffolds was assessed in the simulated body fluids, and the swelling and degradation characteristics of the two developed scaffolds were analyzed separately over time. The results showed that the mechanical durability of the composite scaffolds was enhanced by the bovine bone particles, up to a specific concentration in the silk fibroin matrix. Furthermore, the incorporation of bone particles improved the bioactive composite scaffolds' capacity to generate hydroxyapatite in vitro. The combined findings show that the two 3D printed bio-composites scaffolds have the required mechanical strength and may be applied to regeneration of bone tissue and restoration, since they resemble the characteristics of native bone.
Collapse
Affiliation(s)
- Ali Imran Ansari
- Mechanical Engineering Department, National Institute of Technology Srinagar, Srinagar, Jammu and Kashmir, India
| | - Nazir Ahmad Sheikh
- Mechanical Engineering Department, National Institute of Technology Srinagar, Srinagar, Jammu and Kashmir, India
| | - Navin Kumar
- Mechanical Engineering Department, Indian Institute of Technology Ropar, Ropar, Punjab, India
| |
Collapse
|
4
|
Yew PYM, Chee PL, Lin Q, Owh C, Li J, Dou QQ, Loh XJ, Kai D, Zhang Y. Hydrogel for light delivery in biomedical applications. Bioact Mater 2024; 37:407-423. [PMID: 38689660 PMCID: PMC11059474 DOI: 10.1016/j.bioactmat.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Pei Lin Chee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jiayi Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qing Qing Dou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Huang R, Hua J, Ru M, Yu M, Wang L, Huang Y, Yan S, Zhang Q, Xu W. Superb Silk Hydrogels with High Adaptability, Bioactivity, and Versatility Enabled by Photo-Cross-Linking. ACS NANO 2024; 18:15312-15325. [PMID: 38809601 DOI: 10.1021/acsnano.4c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The exceptional biocompatibility and adaptability of hydrogels have garnered significant interest in the biomedical field for the fabrication of biomedical devices. However, conventional synthetic hydrogels still exhibit relatively weak and fragile properties. Drawing inspiration from the photosynthesis process, we developed a facile approach to achieve a harmonious combination of superior mechanical properties and efficient preparation of silk fibroin hydrogel through photo-cross-linking technology, accomplished within 60 s. The utilization of riboflavin and H2O2 enabled a sustainable cyclic photo-cross-linking reaction, facilitating the transformation from tyrosine to dityrosine and ultimately contributing to the formation of highly cross-linked hydrogels. These photo-cross-linking hydrogels exhibited excellent elasticity and restorability even after undergoing 1000 cycles of compression. Importantly, our findings presented that hydrogel-encapsulated adipose stem cells possess the ability to stimulate cell proliferation along with stem cell stemness. This was evidenced by the continuous high expression levels of OCT4 and SOX2 over 21 days. Additionally, the utilization of photo-cross-linking hydrogels can be extended to various material molding platforms, including microneedles, microcarriers, and bone screws. Consequently, this study offered a significant approach to fabricating biomedical hydrogels capable of facilitating real-time cell delivery, thereby introducing an innovative avenue for designing silk devices with exceptional machinability and adaptability in biomedical applications.
Collapse
Affiliation(s)
- Renyan Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiahui Hua
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Min Ru
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Meng Yu
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Ying Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shuqin Yan
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Zhang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
6
|
Mumtaz S, Ali S, Tahir HM, Mumtaz S, Mughal TA, Kazmi SAR, Hassan A, Summer M, Zulfiqar A, kazmi S. Biological applications of biogenic silk fibroin–chitosan blend zinc oxide nanoparticles. Polym Bull (Berl) 2024; 81:2933-2956. [DOI: 10.1007/s00289-023-04865-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 08/04/2024]
|
7
|
Mehrabi A, Mousazadeh S, Mollafilabi A, Nafissi N, Milan PB. Synthesis and characterization of a silk fibroin/placenta matrix hydrogel for breast reconstruction. Life Sci 2023; 334:122236. [PMID: 37926297 DOI: 10.1016/j.lfs.2023.122236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Reconstructive surgery is a complex and demanding interdisciplinary field. One of the major challenges is the production of sizeable, implantable, inexpensive bioprostheses such as breast implants. In this study, porous hybrid hydrogels were fabricated by a combinatorial method using decellularized human placenta (dHplacenta) and silk fibroin. Histology was used to confirm the acellularity of the dHplacenta. The physio-chemical properties of the hydrogels were evaluated using SEM, FTIR, and rheological assays. The synthesized hydrogels exhibited a uniform 3-D microstructure with an interconnected porous network, and the hybrid hydrogels with a 30/70 ratio had improved mechanical properties compared to the other hydrogels. Hybrid hydrogels were also cultured with adipose-derived mesenchymal stem cells (ADSCs). Liposuction was used to obtain adipose tissue from patients, which was then characterized using flow cytometry and karyotyping. The results showed that CD34 and CD31 were downregulated, whereas CD105 and CD90 were upregulated in ADSCs, indicating a phenotype resembling to that of mesenchymal stem cells from the human bone marrow. Moreover, after re-cellularized hydrogel, the live/dead assay and SEM analysis confirmed that most viability and cellular expansion on the hydrogels contained higher ratios of dHplacenta (30/70) than the other two groups. All these findings recapitulated that the 30/70 dHplacenta/silk fibroin hydrogel can perform as an excellent substrate for breast tissue engineering applications.
Collapse
Affiliation(s)
- Arezou Mehrabi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Mousazadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mollafilabi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Nafissi
- Department of Breast Surgery, Iran University of Medical Sciences, Tehran, Iran.
| | - Peiman Brouki Milan
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ramappa VK, Singh V, Srivastava D, Kumar D, Verma A, Verma D, Fatima E, Chaudhary P, Kumar U, Kumar D. Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties. 3 Biotech 2023; 13:37. [PMID: 36632367 PMCID: PMC9826775 DOI: 10.1007/s13205-022-03443-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition, 1H-NMR was used for profiling of mulberry leaf extract and GC-MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against S. aureus, E. coli, A. flavus, and A. brassicae. PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC-MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the S. aureus and E. coli activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion. S. aureus could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing E. coli growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against S. aureus. Furthermore, at a dosage of 300 g/ml, TPO inhibited both S. aureus and E. coli. Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against A. flavus at all tested concentrations (100, 200, and 300 g/ml).
Collapse
Affiliation(s)
- Venkatesh Kumar Ramappa
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Vandana Singh
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Devika Srivastava
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Devarsh Kumar
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Anshika Verma
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Darshika Verma
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Eram Fatima
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Priyanka Chaudhary
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Umesh Kumar
- Department of Zoology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP 226025 India
| | - Dinesh Kumar
- Centre for Biomedical Research, SGPGIMS Campus, Raibereli Road, Lucknow, UP 226014 India
| |
Collapse
|
9
|
Eliaz D, Paul S, Benyamin D, Cernescu A, Cohen SR, Rosenhek-Goldian I, Brookstein O, Miali ME, Solomonov A, Greenblatt M, Levy Y, Raviv U, Barth A, Shimanovich U. Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers. Nat Commun 2022; 13:7856. [PMID: 36543800 PMCID: PMC9772184 DOI: 10.1038/s41467-022-35505-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Silk is a unique, remarkably strong biomaterial made of simple protein building blocks. To date, no synthetic method has come close to reproducing the properties of natural silk, due to the complexity and insufficient understanding of the mechanism of the silk fiber formation. Here, we use a combination of bulk analytical techniques and nanoscale analytical methods, including nano-infrared spectroscopy coupled with atomic force microscopy, to probe the structural characteristics directly, transitions, and evolution of the associated mechanical properties of silk protein species corresponding to the supramolecular phase states inside the silkworm's silk gland. We found that the key step in silk-fiber production is the formation of nanoscale compartments that guide the structural transition of proteins from their native fold into crystalline β-sheets. Remarkably, this process is reversible. Such reversibility enables the remodeling of the final mechanical characteristics of silk materials. These results open a new route for tailoring silk processing for a wide range of new material formats by controlling the structural transitions and self-assembly of the silk protein's supramolecular phases.
Collapse
Affiliation(s)
- D. Eliaz
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - S. Paul
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - D. Benyamin
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401 Israel
| | - A. Cernescu
- grid.431971.9Neaspec—Attocube Systems AG, Eglfinger Weg 2, Haar, 85540 Munich Germany
| | - S. R. Cohen
- grid.13992.300000 0004 0604 7563Department of Chemical Research Support, Weizmann Institute of Science, 7610001 Re-hovot, Israel
| | - I. Rosenhek-Goldian
- grid.13992.300000 0004 0604 7563Department of Chemical Research Support, Weizmann Institute of Science, 7610001 Re-hovot, Israel
| | - O. Brookstein
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - M. E. Miali
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - A. Solomonov
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - M. Greenblatt
- grid.13992.300000 0004 0604 7563Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Y. Levy
- grid.13992.300000 0004 0604 7563Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - U. Raviv
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401 Israel
| | - A. Barth
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - U. Shimanovich
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
10
|
Zuluaga-Vélez A, Toro-Acevedo CA, Quintero-Martinez A, Melchor-Moncada JJ, Pedraza-Ordoñez F, Aguilar-Fernández E, Sepúlveda-Arias JC. Performance of Colombian Silk Fibroin Hydrogels for Hyaline Cartilage Tissue Engineering. J Funct Biomater 2022; 13:297. [PMID: 36547557 PMCID: PMC9788426 DOI: 10.3390/jfb13040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The development and evaluation of scaffolds play a crucial role in the engineering of hyaline cartilage tissue. This work aims to evaluate the performance of silk fibroin hydrogels fabricated from the cocoons of the Colombian hybrid in the in vitro regeneration of hyaline cartilage. The scaffolds were physicochemically characterized, and their performance was evaluated in a cellular model. The results showed that the scaffolds were rich in random coils and β-sheets in their structure and susceptible to various serine proteases with different degradation profiles. Furthermore, they showed a significant increase in ACAN, COL10A1, and COL2A1 expression compared to pellet culture alone and allowed GAG deposition. The soluble portion of the scaffold did not affect chondrogenesis. Furthermore, they promoted the increase in COL1A2, showing a slight tendency to differentiate towards fibrous cartilage. The results also showed that Colombian silk could be used as a source of biomedical devices, paving the way for sericulture to become a more diverse economic activity in emerging countries.
Collapse
Affiliation(s)
- Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Carlos Andrés Toro-Acevedo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Adrián Quintero-Martinez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México City 04510, Mexico
| | - Jhon Jairo Melchor-Moncada
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | | | - Enrique Aguilar-Fernández
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| |
Collapse
|
11
|
A convergent synthetic platform of photocurable silk fibroin-polyvinylpyrrolidone hydrogels for local anaesthesia examination. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Haghighattalab M, Kajbafzadeh A, Baghani M, Gharehnazifam Z, Jobani BM, Baniassadi M. Silk Fibroin Hydrogel Reinforced With Magnetic Nanoparticles as an Intelligent Drug Delivery System for Sustained Drug Release. Front Bioeng Biotechnol 2022; 10:891166. [PMID: 35910019 PMCID: PMC9334656 DOI: 10.3389/fbioe.2022.891166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the well-known biocompatibility, tunable biodegradability, and mechanical properties, silk fibroin hydrogel is an exciting material for localized drug delivery systems to decrease the therapy cost, decrease the negative side effects, and increase the efficiency of chemotherapy. However, the lack of remote stimuli response and active drug release behavior has yet to be analyzed comparatively. In this study, we developed magnetic silk fibroin (SF) hydrogel samples through the facile blending method, loaded with doxorubicin hydrochloride (DOX) and incorporated with different concentrations of iron oxide nanoparticles (IONPs), to investigate the presumable ability of controlled and sustained drug release under the various external magnetic field (EMF). The morphology and rheological properties of SF hydrogel and magnetic SF hydrogel were compared through FESEM images and rheometer analysis. Here, we demonstrated that adding magnetic nanoparticles (MNPs) into SFH decreased the complex viscosity and provided a denser porosity with a bigger pore size matrix structure, which allowed the drug to be released faster in the absence of an EMF. Release kinetic studies show that magnetic SF hydrogel could achieve controlled release of DOX in the presence of an EMF. Furthermore, the drug release from magnetic SF hydrogel decreased in the presence of a static magnetic field (SMF) and an alternating magnetic field (AMF), and the release rate decreased even more with the higher MNPs concentration and magnetic field strength. Subsequently, Wilms’ tumor and human fibroblast cells were cultured with almost the same concentration of DOX released in different periods, and cell viability was investigated using MTT assay. MTT results indicated that the Wilms’ tumor cells were more resistant to DOX than the human fibroblasts, and the IC50 values were calculated at 1.82 ± 0.001 and 2.73 ± 0.004 (μg/ml) for human fibroblasts and Wilms’ tumor cells, respectively. Wilms’ tumor cells showed drug resistance in a higher DOX concentration, indicating the importance of controlled drug delivery. These findings suggest that the developed magnetic SFH loaded with DOX holds excellent potential for intelligent drug delivery systems with noninvasive injection and remotely controlled abilities.
Collapse
Affiliation(s)
- Mahsa Haghighattalab
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Abdolmohammad Kajbafzadeh
- Department of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Urology Research Center, Children’s Medical Center, Tehran, Iran
- *Correspondence: Abdolmohammad Kajbafzadeh, ; Majid Baniassadi,
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ziba Gharehnazifam
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
- *Correspondence: Abdolmohammad Kajbafzadeh, ; Majid Baniassadi,
| |
Collapse
|
13
|
Eivazzadeh-Keihan R, Zare-Bakheir E, Aliabadi HAM, Gorab MG, Ghafuri H, Maleki A, Madanchi H, Mahdavi M. A novel, bioactive and antibacterial scaffold based on functionalized graphene oxide with lignin, silk fibroin and ZnO nanoparticles. Sci Rep 2022; 12:8770. [PMID: 35610263 PMCID: PMC9130258 DOI: 10.1038/s41598-022-12283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel nanobiocomposite was synthesized using graphene oxide, lignin, silk fibroin and ZnO and used in biological fields. To synthesize this structure, after preparing graphene oxide by the Hummer method, lignin, silk fibroin, and ZnO nanoparticles (NPs) were added to it, respectively. Also, ZnO NPs with a particle size of about 18 nm to 33 nm was synthesized via Camellia sinensis extract by green methodology. The synthesized structure was examined as anti-biofilm agent and it was observed that the Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite has a significant ability to prevent the formation of P. aeruginosa biofilm. In addition, due to the importance of the possibility of using this structure in biological environments, its toxicity and blood compatibility were also evaluated. According to the obtained results from MTT assay, the viability percentages of Hu02 cells treated with Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite after 24, 48, and 72 h of incubation were 89.96%, 89.32%, and 91.28%. On the other hand, the hemolysis percentage of the synthesized structure after 24 h and 72 h of extraction was 9.5% and 11.76% respectively. As a result, the synthesized structure has a hemolysis percentage below 12% and its toxicity effect on Hu02 cells is below 9%.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ensiye Zare-Bakheir
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Advanced Chemistry Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
|
15
|
Davari N, Bakhtiary N, Khajehmohammadi M, Sarkari S, Tolabi H, Ghorbani F, Ghalandari B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers (Basel) 2022; 14:986. [PMID: 35267809 PMCID: PMC8914701 DOI: 10.3390/polym14050986] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The successful design of a hydrogel for tissue engineering requires a profound understanding of its constituents' structural and molecular properties, as well as the proper selection of components. If the engineered processes are in line with the procedures that natural materials undergo to achieve the best network structure necessary for the formation of the hydrogel with desired properties, the failure rate of tissue engineering projects will be significantly reduced. In this review, we examine the behavior of proteins as an essential and effective component of hydrogels, and describe the factors that can enhance the protein-based hydrogels' structure. Furthermore, we outline the fabrication route of protein-based hydrogels from protein microstructure and the selection of appropriate materials according to recent research to growth factors, crucial members of the protein family, and their delivery approaches. Finally, the unmet needs and current challenges in developing the ideal biomaterials for protein-based hydrogels are discussed, and emerging strategies in this area are highlighted.
Collapse
Affiliation(s)
- Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran;
| | - Negar Bakhtiary
- Burn Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14115114, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd 8174848351, Iran;
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 158754413, Iran;
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 158754413, Iran
| | - Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
16
|
Lee S, Choi J, Youn J, Lee Y, Kim W, Choe S, Song J, Reis RL, Khang G. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Biomolecules 2021; 11:1184. [PMID: 34439850 PMCID: PMC8394129 DOI: 10.3390/biom11081184] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Hydrogel is in the spotlight as a useful biomaterial in the field of drug delivery and tissue engineering due to its similar biological properties to a native extracellular matrix (ECM). Herein, we proposed a ternary hydrogel of gellan gum (GG), silk fibroin (SF), and chondroitin sulfate (CS) as a biomaterial for cartilage tissue engineering. The hydrogels were fabricated with a facile combination of the physical and chemical crosslinking method. The purpose of this study was to find the proper content of SF and GG for the ternary matrix and confirm the applicability of the hydrogel in vitro and in vivo. The chemical and mechanical properties were measured to confirm the suitability of the hydrogel for cartilage tissue engineering. The biocompatibility of the hydrogels was investigated by analyzing the cell morphology, adhesion, proliferation, migration, and growth of articular chondrocytes-laden hydrogels. The results showed that the higher proportion of GG enhanced the mechanical properties of the hydrogel but the groups with over 0.75% of GG exhibited gelling temperatures over 40 °C, which was a harsh condition for cell encapsulation. The 0.3% GG/3.7% SF/CS and 0.5% GG/3.5% SF/CS hydrogels were chosen for the in vitro study. The cells that were encapsulated in the hydrogels did not show any abnormalities and exhibited low cytotoxicity. The biochemical properties and gene expression of the encapsulated cells exhibited positive cell growth and expression of cartilage-specific ECM and genes in the 0.5% GG/3.5% SF/CS hydrogel. Overall, the study of the GG/SF/CS ternary hydrogel with an appropriate content showed that the combination of GG, SF, and CS can synergistically promote articular cartilage defect repair and has considerable potential for application as a biomaterial in cartilage tissue engineering.
Collapse
Affiliation(s)
- Seongwon Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Joohee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Jina Youn
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Younghun Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Wooyoup Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Seungho Choe
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Jeongeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal;
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea
| |
Collapse
|
17
|
Zuluaga-Vélez A, Quintero-Martinez A, Orozco LM, Sepúlveda-Arias JC. Silk fibroin nanocomposites as tissue engineering scaffolds - A systematic review. Biomed Pharmacother 2021; 141:111924. [PMID: 34328093 DOI: 10.1016/j.biopha.2021.111924] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response.
Collapse
Affiliation(s)
- Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Adrián Quintero-Martinez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Lina M Orozco
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
18
|
Ahn W, Lee JH, Kim SR, Lee J, Lee EJ. Designed protein- and peptide-based hydrogels for biomedical sciences. J Mater Chem B 2021; 9:1919-1940. [PMID: 33475659 DOI: 10.1039/d0tb02604b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions - including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin - have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.
Collapse
Affiliation(s)
- Wonkyung Ahn
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea. and Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
19
|
Shojarazavi N, Mashayekhan S, Pazooki H, Mohsenifard S, Baniasadi H. Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering. J Biomater Appl 2021; 36:803-817. [PMID: 34121491 DOI: 10.1177/08853282211024020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, alginate/cartilage extracellular matrix (ECM)-based injectable hydrogel was developed incorporated with silk fibroin nanofibers (SFN) for cartilage tissue engineering. The in situ forming hydrogels were composed of different ionic crosslinked alginate concentrations with 1% w/v enzymatically crosslinked phenolized cartilage ECM, resulting in an interpenetrating polymer network (IPN). The response surface methodology (RSM) approach was applied to optimize IPN hydrogel's mechanical properties by varying alginate and SFN concentrations. The results demonstrated that upon increasing the alginate concentration, the compression modulus improved. The SFN concentration was optimized to reach a desired mechanical stiffness. Accordingly, the concentrations of alginate and SFN to have an optimum compression modulus in the hydrogel were found to be 1.685 and 1.724% w/v, respectively. The gelation time was found to be about 10 s for all the samples. Scanning electron microscope (SEM) images showed homogeneous dispersion of the SFN in the hydrogel, mimicking the natural cartilage environment. Furthermore, water uptake capacity, degradation rate, cell cytotoxicity, and glycosaminoglycan and collagen II secretions were determined for the optimum hydrogel to support its potential as an injectable scaffold for articular cartilage defects.
Collapse
Affiliation(s)
- Nastaran Shojarazavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hossein Pazooki
- Department of Chemical and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sadaf Mohsenifard
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
20
|
Eivazzadeh-Keihan R, Moghim Aliabadi HA, Radinekiyan F, Sobhani M, Farzane Khalili, Maleki A, Madanchi H, Mahdavi M, Shalan AE. Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin-agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv 2021; 11:17914-17923. [PMID: 35480185 PMCID: PMC9033182 DOI: 10.1039/d1ra01300a] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Given the important aspects of wound healing approaches, in this work, an innovative biocompatible nanobiocomposite scaffold was designed and prepared based on cross-linked lignin-agarose hydrogel, extracted silk fibroin solution, and zinc chromite (ZnCr2O4) nanoparticles. Considering the cell viability technique, red blood cell hemolysis in addition to anti-biofilm assays, it was determined that after three days, the toxicity of the cross-linked lignin-agarose/SF/ZnCr2O4 nanobiocomposite was less than 13%. Moreover, the small hemolytic effect (1.67%) and high level of prevention in forming a P. aeruginosa biofilm with low OD value (0.18) showed signs of considerable hemocompatibility and antibacterial activity. Besides, according to an in vivo assay study, the wounds of mice treated with the cross-linked lignin-agarose/SF/ZnCr2O4 nanobiocomposite scaffold were almost completely healed in five days. Aside from these biological tests, the structural features were evaluated by FT-IR, EDX, FE-SEM, and TG analyses, as well as swelling ratio, rheological, and compressive mechanical study tests. Additionally, it was concluded that adding silk fibroin and ZnCr2O4 nanoparticles could enhance the mechanical tensile properties of cross-linked lignin-agarose hydrogel, and also an elastic network was characterized for this designed nanobiocomposite.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hooman Aghamirza Moghim Aliabadi
- Faculty of Chemistry, K. N. Toosi University of Technology Tehran Iran
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Sobhani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Farzane Khalili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences Semnan Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Ahmed Esmail Shalan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n Leioa 48940 Spain
- Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87 Helwan Cairo 11421 Egypt
| |
Collapse
|
21
|
Yuan T, Li Z, Zhang Y, Shen K, Zhang X, Xie R, Liu F, Fan W. Injectable Ultrasonication-Induced Silk Fibroin Hydrogel for Cartilage Repair and Regeneration. Tissue Eng Part A 2021; 27:1213-1224. [PMID: 33353462 DOI: 10.1089/ten.tea.2020.0323] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage lacks both a nutrient supply and progenitor cells. Once damaged, it has limited self-repair capability. Cartilage tissue engineering provides a promising strategy for regeneration, and the use of injectable hydrogels as scaffolds has recently attracted much attention. Silk fibroin (SF) is an advanced natural material used to construct injectable hydrogels that are nontoxic and can be used efficiently in crosslinking applications. The objective of the present work was to develop an injectable hydrogel using SF in a novel one-step ultrasonication crosslinking method. Gelation kinetics and the characteristics of ultrasonication-induced SF (US-SF) hydrogels were systematically evaluated. The cytocompatibility of US-SF hydrogels was evaluated using rabbit chondrocytes, the Cell Counting Kit-8 testing, and immunofluorescence staining. Furthermore, the in vivo cartilage regenerative ability of US-SF hydrogels was confirmed following subcutaneous administration in nude mice and in situ injections in rabbit osteochondral defect models. These results suggest that US-SF hydrogels could be potential candidates for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Xie
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Guan Y, Sun F, Zhang X, Peng Z, Jiang B, Liang M, Wang Y. Silk fibroin hydrogel promote burn wound healing through regulating TLN1 expression and affecting cell adhesion and migration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:48. [PMID: 32405818 DOI: 10.1007/s10856-020-06384-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Skin injury is a kind of common tissue damage in daily life and war. Silk fibroin (SF) is becoming an engineered material for skin wound repair due to its superior unique physical and chemical properties. The present study aimed to illustrate mechanism of SF hydrogel promoting skin repair in the second degree burn mice. METHODS Heat shock models were established. In vitro, cells were culture for 50 min at 44 °C water bath; while in vivo, the skin of anesthetic mice were treat with soldering iron at 90 °C. Then, they divided into silk fibroin gel group, purilon gel group and control (blank) group. The cellular activity of proliferation and apoptosis was detected by Kit-8, flow cytometry and HE-staining, and the migration and adhesion were detected by scratch test. qRT-PCR and WB were employed to detected adhesion and migration related genes and proteins expression. TLN1 siRNA and overexpression technologies were also employed to illustrate the potential mechanism of SF effects. RESULTS Compared with the purilon gel group and control group, SF hydrogel could enhance cell proliferation, migration and adhesion and increase the expression of adhesion and migration related proteins (P < 0.05), which promote burn wound healing. CONCLUSIONS Through the inhibition, overexpression and rescue experiments of Talin1, we proved that silk fibroin hydrogel promote burn wound healing through regulating TLN1 expression and affecting cell adhesion and migration.
Collapse
Affiliation(s)
- Ying Guan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Feng Sun
- Department of Orthopedic Surgery, General Hospital of Heilongjiang Province Land Reclamation Headquarter, 150001, Harbin, China
| | - Xiaojuan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Zhibin Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Bo Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Min Liang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Yansong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, 150001, Harbin, China.
| |
Collapse
|
23
|
de Almeida DA, Sabino RM, Souza PR, Bonafé EG, Venter SA, Popat KC, Martins AF, Monteiro JP. Pectin-capped gold nanoparticles synthesis in-situ for producing durable, cytocompatible, and superabsorbent hydrogel composites with chitosan. Int J Biol Macromol 2020; 147:138-149. [DOI: 10.1016/j.ijbiomac.2020.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
|
24
|
Coelho F, Cavicchioli M, Specian SS, Cilli EM, Lima Ribeiro SJ, Scarel-Caminaga RM, de Oliveira Capote TS. Silk fibroin/hydroxyapatite composite membranes: Production, characterization and toxicity evaluation. Toxicol In Vitro 2020; 62:104670. [DOI: 10.1016/j.tiv.2019.104670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
25
|
Baptista M, Joukhdar H, Alcala-Orozco CR, Lau K, Jiang S, Cui X, He S, Tang F, Heu C, Woodfield TBF, Lim KS, Rnjak-Kovacina J. Silk fibroin photo-lyogels containing microchannels as a biomaterial platform for in situ tissue engineering. Biomater Sci 2020; 8:7093-7105. [DOI: 10.1039/d0bm01010c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Silk photo-lyogels fabricated by di-tyrosine photo-crosslinking and ice-templating silk fibroin on 3D printed templates toward in situ tissue engineering applications.
Collapse
|
26
|
Zhu C, Ding Z, Lu Q, Lu G, Xiao L, Zhang X, Dong X, Ru C, Kaplan DL. Injectable Silk-Vaterite Composite Hydrogels with Tunable Sustained Drug Release Capacity. ACS Biomater Sci Eng 2019; 5:6602-6609. [PMID: 33423479 DOI: 10.1021/acsbiomaterials.9b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Improving the efficiency of chemotherapy remains a key challenge in drug delivery. Many drug carriers have been designed to achieve multifunctional factors as part of their performance, including controlled release, dispersibility in aqueous environments, and targeting to cancer sites. However, it is difficult to optimize multiple properties simultaneously for a single carrier system. Here, synergistic carriers composed of vaterite microspheres and silk nanofiber hydrogels were developed to improve the dispersibility of vaterite spheres and the control of drug delivery without compromising the injectability or sensitivity to pH. The vaterite microspheres were dispersed homogeneously and remained stable in the silk nanofiber hydrogels. Doxorubicin (DOX) was effectively loaded on the vaterite spheres and silk nanofibers, forming synergistic silk-vaterite hydrogel delivery systems. The sustained delivery of DOX was tuned and controlled by vaterite stability and the DOX content loaded on the spheres and nanofibers. The cytotoxicity was regulated via the controlled delivery of DOX, suggesting the possibility of optimizing chemotherapeutic strategies. These silk-vaterite delivery hydrogels suggest a useful strategy for designing novel delivery systems for improved delivery and therapeutic benefits.
Collapse
Affiliation(s)
- Caihong Zhu
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 178 Ganjiang East Road, Suzhou 215021, People's Republic of China.,National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, 585 Xingyuan North Road, Wuxi 214041, People's Republic of China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Xiaodan Dong
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Changhai Ru
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 178 Ganjiang East Road, Suzhou 215021, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| |
Collapse
|