1
|
Leslie A, Teh E, Druker A, Pinto DM. A targeted isotope dilution mass spectrometry assay for osteopontin quantification in plasma of metastatic breast cancer patients. PLoS One 2023; 18:e0281491. [PMID: 37384615 PMCID: PMC10309610 DOI: 10.1371/journal.pone.0281491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Osteopontin (OPN) is a secreted glycophosphoprotein that derives its name from its high abundance in bone and secretion by osteoblasts. It is also secreted by a number of immune cells and, therefore, is present in human plasma at nanogram per millilitre levels where it affects cell adhesion and motility. OPN is involved in several normal physiological processes; however, OPN dyregulation leads to overexpression by tumor cells leading to immune evasion and increased metastasis. Plasma OPN is primarily measured by enzyme-linked immunosorbent assay (ELISA). However, due to the complexity of the various OPN isoforms, conflicting results have been obtained on the use of OPN as a biomarker even in the same disease condition. These discrepant results may result from the difficulty in comparing ELISA results obtained with different antibodies that target unique OPN epitopes. Mass spectrometry can be used to quantify proteins in plasma and, by targeting OPN regions that do not bear post-translational modifications, may provide more consistent quantification. However, the low (ng/mL) levels in plasma present a significant analytical challenge. In order to develop a sensitive assay for plasma OPN, we explored a single-step precipitation method using a recently developed spin-tube format. Quantification was performed using isotope-dilution mass spectrometry. The concentration detection limit of this assay was 39 ± 15 ng/mL. The assay was applied to the analysis of plasma OPN in metastatic breast cancer patients, where levels from 17 to 53 ng/mL were detected. The sensitivity of the method is higher than previously published methods and sufficient for OPN detection in large, high grade tumors but still requires improvement in sensitivity to be widely applicable.
Collapse
Affiliation(s)
- Andrew Leslie
- Human Health Therapeutics Research Center, National Research Council, Halifax, Nova Scotia, United Kingdom
| | - Evelyn Teh
- Human Health Therapeutics Research Center, National Research Council, Halifax, Nova Scotia, United Kingdom
| | - Arik Druker
- Nova Scotia Health Authority, Division of Medical Oncology, Halifax, Nova Scotia, United Kingdom
- Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, United Kingdom
| | - Devanand M. Pinto
- Human Health Therapeutics Research Center, National Research Council, Halifax, Nova Scotia, United Kingdom
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, United Kingdom
| |
Collapse
|
2
|
Zhou Y, Jönsson A, Sticker D, Zhou G, Yuan Z, Kutter JP, Emmer Å. Thiol-ene-based microfluidic chips for glycopeptide enrichment and online digestion of inflammation-related proteins osteopontin and immunoglobulin G. Anal Bioanal Chem 2023; 415:1173-1185. [PMID: 36607393 PMCID: PMC9817458 DOI: 10.1007/s00216-022-04498-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Proteins, and more specifically glycoproteins, have been widely used as biomarkers, e.g., to monitor disease states. Bottom-up approaches based on mass spectrometry (MS) are techniques commonly utilized in glycoproteomics, involving protein digestion and glycopeptide enrichment. Here, a dual function polymeric thiol-ene-based microfluidic chip (TE microchip) was applied for the analysis of the proteins osteopontin (OPN) and immunoglobulin G (IgG), which have important roles in autoimmune diseases, in inflammatory diseases, and in coronavirus disease 2019 (COVID-19). TE microchips with larger internal surface features immobilized with trypsin were successfully utilized for OPN digestion, providing rapid and efficient digestion with a residence time of a few seconds. Furthermore, TE microchips surface-modified with ascorbic acid linker (TEA microchip) have been successfully utilized for IgG glycopeptide enrichment. To illustrate the use of the chips for more complex samples, they were applied to enrich IgG glycopeptides from human serum samples with antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The dual functional TE microchips could provide high throughput for online protein digestion and glycopeptide enrichment, showing great promise for future extended applications in proteomics and the study of related diseases.
Collapse
Affiliation(s)
- Yuye Zhou
- Department of Chemistry, Analytical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Alexander Jönsson
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Drago Sticker
- Novo Nordisk A/S, Biophysics and Formulation, 2760, Måløv, Denmark
| | - Guojun Zhou
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Zishuo Yuan
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Åsa Emmer
- Department of Chemistry, Analytical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
| |
Collapse
|
3
|
Darie-Ion L, Whitham D, Jayathirtha M, Rai Y, Neagu AN, Darie CC, Petre BA. Applications of MALDI-MS/MS-Based Proteomics in Biomedical Research. Molecules 2022; 27:6196. [PMID: 36234736 PMCID: PMC9570737 DOI: 10.3390/molecules27196196] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the most widely used techniques in proteomics to achieve structural identification and characterization of proteins and peptides, including their variety of proteoforms due to post-translational modifications (PTMs) or protein-protein interactions (PPIs). MALDI-MS and MALDI tandem mass spectrometry (MS/MS) have been developed as analytical techniques to study small and large molecules, offering picomole to femtomole sensitivity and enabling the direct analysis of biological samples, such as biofluids, solid tissues, tissue/cell homogenates, and cell culture lysates, with a minimized procedure of sample preparation. In the last decades, structural identification of peptides and proteins achieved by MALDI-MS/MS helped researchers and clinicians to decipher molecular function, biological process, cellular component, and related pathways of the gene products as well as their involvement in pathogenesis of diseases. In this review, we highlight the applications of MALDI ionization source and tandem approaches for MS for analyzing biomedical relevant peptides and proteins. Furthermore, one of the most relevant applications of MALDI-MS/MS is to provide "molecular pictures", which offer in situ information about molecular weight proteins without labeling of potential targets. Histology-directed MALDI-mass spectrometry imaging (MSI) uses MALDI-ToF/ToF or other MALDI tandem mass spectrometers for accurate sequence analysis of peptide biomarkers and biological active compounds directly in tissues, to assure complementary and essential spatial data compared with those obtained by LC-ESI-MS/MS technique.
Collapse
Affiliation(s)
- Laura Darie-Ion
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Yashveen Rai
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 22, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Brînduşa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
4
|
Zhou Y, Xu Y, Zhang C, Emmer Å, Zheng H. Amino Acid-Functionalized Two-Dimensional Hollow Cobalt Sulfide Nanoleaves for the Highly Selective Enrichment of N-Linked Glycopeptides. Anal Chem 2019; 92:2151-2158. [DOI: 10.1021/acs.analchem.9b04740] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuye Zhou
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Analytical Chemistry, Stockholm SE−100 44, Sweden
| | - Yang Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Åsa Emmer
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Analytical Chemistry, Stockholm SE−100 44, Sweden
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|