1
|
Tan Q, Miao J, Nitschke L, Nickel MD, Lerchbaumer MH, Penzkofer T, Hofbauer S, Peters R, Hamm B, Geisel D, Wagner M, Walter-Rittel TC. Deep learning enabled near-isotropic CAIPIRINHA VIBE in the nephrogenic phase improves image quality and renal lesion conspicuity. Eur J Radiol Open 2025; 14:100622. [PMID: 39758710 PMCID: PMC11699112 DOI: 10.1016/j.ejro.2024.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Background Deep learning (DL) accelerated controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), provides high spatial resolution T1-weighted imaging of the upper abdomen. We aimed to investigate whether DL-CAIPIRINHA-VIBE can improve image quality, vessel conspicuity, and lesion detectability compared to a standard CAIPIRINHA-VIBE in renal imaging at 3 Tesla. Methods In this prospective study, 50 patients with 23 solid and 45 cystic renal lesions underwent MRI with clinical MR sequences, including standard CAIPIRINHA-VIBE and DL-CAIPIRINHA-VIBE sequences in the nephrographic phase at 3 Tesla. Two experienced radiologists independently evaluated both sequences and multiplanar reconstructions (MPR) of the sagittal and coronal planes for image quality with a Likert scale ranging from 1 to 5 (5 =best). Quantitative measurements including the size of the largest lesion and renal lesion contrast ratios were evaluated. Results DL-CAIPIRINHA-VIBE compared to standard CAIPIRINHA-VIBE showed significantly improved overall image quality, higher scores for renal border delineation, renal sinuses, vessels, adrenal glands, reduced motion artifacts and reduced perceived noise in nephrographic phase images (all p < 0.001). DL-CAIPIRINHA-VIBE with MPR showed superior lesion conspicuity and diagnostic confidence compared to standard CAIPIRINHA-VIBE. However, DL-CAIPIRINHA-VIBE presented a more synthetic appearance and more aliasing artifacts (p < 0.023). The mean size and signal intensity of renal lesions for DL-CAIPIRINHA-VIBE showed no significant differences compared to standard CAIPIRINHA-VIBE (p > 0.9). Conclusions DL-CAIPIRINHA-VIBE is well suited for kidney imaging in the nephrographic phase, provides good image quality, improved delineation of anatomic structures and renal lesions.
Collapse
Affiliation(s)
- Qinxuan Tan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jingyu Miao
- Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Leila Nitschke
- Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Markus Herbert Lerchbaumer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Penzkofer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Sebastian Hofbauer
- Department of Urology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Peters
- Department of Urology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik Geisel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Moritz Wagner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thula Cannon Walter-Rittel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Kübler J, Krumm P, Martirosian P, Winkelmann MT, Gohla G, Nikolaou K, Hoffmann R. Improved visualization of hepatic tumors in magnetic resonance-guided thermoablation using T1-inversion-recovery imaging with variable inversion time. Eur Radiol 2023; 33:7015-7024. [PMID: 37133519 PMCID: PMC10511564 DOI: 10.1007/s00330-023-09696-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVES In magnetic resonance (MR)-guided interventions, visualization of hepatic lesions may be difficult using standard unenhanced T1-weighted gradient-echo volume-interpolated breath-hold (VIBE) sequence due to low contrast. Inversion recovery (IR) imaging may have the potential to improve visualization without the necessity to apply contrast agent. METHODS Forty-four patients (mean age 64 years, female 33%) scheduled for MR-guided thermoablation due to liver malignancies (hepatocellular carcinoma or metastases) were prospectively included in this study between March 2020 and April 2022. Fifty-one liver lesions were intra-procedurally characterized before treatment. Unenhanced T1-VIBE was acquired as part of the standard imaging protocol. Additionally, T1-modified look-locker images were acquired with eight different inversion times (TI) between 148 and 1743 ms. Lesion-to-liver contrast (LLC) was compared between T1-VIBE and IR images for each TI. T1 relaxation times for liver lesions and liver parenchyma were calculated. RESULTS Mean LLC in T1-VIBE sequence was 0.3 ± 0.1. In IR images, LLC was highest at TI 228 ms (1.04 ± 1.1) and significantly higher compared to T1-VIBE (p < 0.001). In subgroup analysis, lesions of colorectal carcinoma showed the highest LLC at 228 ms (1.14 ± 1.4), and hepatocellular carcinoma showed the highest LLC at 548 ms (1.06 ± 1.16). T1-relaxation times in liver lesions were higher compared to the adjacent liver parenchyma (1184 ± 456 vs. 654 ± 96 ms, p < 0.001). CONCLUSIONS IR imaging is promising to provide improved visualization during unenhanced MR-guided liver interventions compared to standard T1-VIBE sequence when using specific TI. Low TI between 150 and 230 ms yields the highest contrast between liver parenchyma and malignant liver lesions. CLINICAL RELEVANCE STATEMENT Improved visualization of hepatic lesions during MR-guided percutaneous interventions using inversion recovery imaging without the necessity to apply contrast agent. KEY POINTS • Inversion recovery imaging is promising to provide improved visualization of liver lesions in unenhanced MRI. • Planning and guidance during MR-guided interventions in the liver can be performed with greater confidence without necessity to apply contrast agent. • Low TI between 150 and 230 ms yields the highest contrast between liver parenchyma and malignant liver lesions.
Collapse
Affiliation(s)
- J Kübler
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany.
| | - P Krumm
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - P Martirosian
- Section On Experimental Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - M T Winkelmann
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - G Gohla
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - K Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - R Hoffmann
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Correlation of Native Liver Parenchyma T1 and T2 Relaxation Times and Liver Synthetic Function Tests: A Pilot Study. Diagnostics (Basel) 2021; 11:diagnostics11061125. [PMID: 34203008 PMCID: PMC8233916 DOI: 10.3390/diagnostics11061125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
MR relaxometry increasingly contributes to liver imaging. Studies on native relaxation times mainly describe relation to the presence of fibrosis. The hypothesis was that relaxation times are also influenced by other inherent factors, including changes in liver synthesis function. With the approval of the local ethics committee and written informed consent, data from 94 patients referred for liver MR imaging, of which 20 patients had cirrhosis, were included. Additionally to standard sequences, both native T1 and T2 parametric maps and T1 maps in the hepatobiliary phase of gadoxetate disodium were acquired. Associations with laboratory variables were assessed. Altogether, there was a negative correlation between albumin and all acquired relaxation times in cirrhotic patients. In non-cirrhotic patients, only T1 values exhibited a negative correlation with albumin. In all patients, bilirubin correlated significantly with post-contrast T1 relaxation times, whereas native relaxation times correlated only in cirrhotic patients. Evaluating patients with pathological INR values, post-contrast relaxation times were significantly higher, whereas native relaxation times did not correlate. In conclusion, apart from confirming the value of hepatobiliary phase T1 mapping, our results show a correlation of native T1 with serum albumin even in non-cirrhotic liver parenchyma, suggesting a direct influence of liver’s synthesis capacity on T1 relaxation times.
Collapse
|
4
|
Ji Y, Zhu J, Zhu L, Zhu Y, Zhao H. High-Intensity Focused Ultrasound Ablation for Unresectable Primary and Metastatic Liver Cancer: Real-World Research in a Chinese Tertiary Center With 275 Cases. Front Oncol 2020; 10:519164. [PMID: 33194582 PMCID: PMC7658544 DOI: 10.3389/fonc.2020.519164] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
This retrospective analysis was conducted to evaluate the feasibility and safety of high-intensity focused ultrasound ablation for primary liver cancer and metastatic liver cancer. Patients with liver cancer who received high-intensity focused ultrasound were included in this analysis, including a primary liver cancer cohort (n=80) and a metastatic liver cancer cohort (n=195). The primary endpoint of our research was tumor response. The secondary endpoints included survival outcomes, visual analog scale pain scores, alpha-fetoprotein relief, and complications. Objective response rate and disease control rate were observed to be 71.8% and 81.2%, respectively, in patients with primary liver cancer and were 63.7% and 83.2% in cases with metastatic liver cancer. Alpha-fetoprotein levels and visual analogue scale levels significantly decreased after treatment compared with the baseline levels in patients with primary liver cancer (p<0.05). Median overall survival was estimated to be 13.0 and 12.0 months in the primary liver cancer and metastatic liver cancer cohorts. The 1-year survival rate was 70.69% and 48.00%, respectively. Multivariate regression analysis showed that visual analogue scale ≥ 5, longest diameter ≥ 5 cm, and portal vein invasion were the independent risk factors for poor survival in primary liver cancer. For patients with metastatic liver cancer, independent risk factors were identified as visual analogue scale ≥ 5, longest diameter ≥ 5 cm, existence of extrahepatic metastases, existence of portal vein invasion, and time to high-intensity focused ultrasound treatment from diagnosis < 3 months. Severe adverse events were rarely reported. In conclusion, high-intensity focused ultrasound might be an effective and safe option for patients with liver cancer regardless of primary and metastatic lesions.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhao
- HIFU Center of Oncology Department, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
5
|
Intracellular accumulation capacity of gadoxetate: initial results for a novel biomarker of liver function. Sci Rep 2020; 10:18104. [PMID: 33093649 PMCID: PMC7582909 DOI: 10.1038/s41598-020-75145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/05/2020] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown gadoxetate disodium’s potential to represent liver function by its retention in the hepatobiliary phase. Additionally, in cardiac imaging, quantitative characterization of altered parenchyma is established by extracellular volume (ECV) calculation with extracellular contrast agents. Therefore, the purpose of our study was to evaluate whether intracellular accumulation capacity (IAC) of gadoxetate disodium derived from ECV calculation provides added scientific value in terms of liver function compared to the established parameter reduction rate (RR). After local review board approval, 105 patients undergoing standard MR examination with gadoxetate disodium were included. Modified Look-Locker sequences were obtained before and 20 min after contrast agent administration. RR and IAC were calculated and correlated with serum albumin, as a marker of synthetic liver function. Correlation was higher between IAC and albumin, than between RR and albumin. Additionally, capacity of both RR and IAC to distinguish between patients with or without liver cirrhosis was investigated, and differed significantly in their respective means between patients with cirrhosis and those without. We concluded, that the formula to calculate ECV can be transferred to calculate IAC of gadoxetate disodium in hepatocytes, and, thereby, IAC may possibly qualify as an imaging-based parameter to estimate synthetic liver function.
Collapse
|
6
|
Fahlenkamp UL, Ziegeler K, Adams LC, Böker SM, Engel G, Makowski MR. Native T1 mapping for assessment of the perilesional zone in metastases and benign lesions of the liver. Sci Rep 2020; 10:12889. [PMID: 32733016 PMCID: PMC7393097 DOI: 10.1038/s41598-020-69819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
Adjacent to hepatic metastases, liver parenchyma is often histopathologically altered even if its visual appearance on native magnetic resonance (MR) images is blunt. Yet, relaxation properties in MR imaging may show structural changes prior to visual alteration, and therefore, the aim of this study was to investigate whether T1 relaxation times in the perilesional zone differ between metastases and benign lesions. A total of 113 patients referred for MRI were included prospectively. Images were assessed for metastases, solid benign lesions and cysts, and regions-of-interest were drawn on T1 maps including the focal lesion and a close (inner perilesional zone = IPZ) and a larger perilesional zone (outer perilesional zone = OPZ). Simple ratios between these zones, as well as a gradient ratio between the IPZ and the entire perilesional zone (EPZ) were calculated. Within the collective, 44 patients had lesions of one or two entities. For metastases, the simple ratio between IPZ and OPZ as well as the mean EPZ gradient was significantly higher than for both solid benign lesions and cysts. Lesion size was not a significant covariate. We conclude, that native T1 properties of the perilesional zones differ significantly between malignant and both solid and cystic benign lesions.
Collapse
Affiliation(s)
- Ute Lina Fahlenkamp
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Katharina Ziegeler
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lisa Christine Adams
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah Maria Böker
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Günther Engel
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus Richard Makowski
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Radiology, Klinikum rechts der Isar der TU München, Ismaninger Straße 22, 81675, Munich, Germany
| |
Collapse
|