1
|
Zhao A, Zhang G, Wei H, Yan X, Gan J, Jiang X. Heat shock proteins in cerebral ischemia-reperfusion injury: Mechanisms and therapeutic implications. Exp Neurol 2025; 390:115284. [PMID: 40318821 DOI: 10.1016/j.expneurol.2025.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) remains a significant challenge in ischemic stroke treatment. Heat shock proteins (HSPs), a cadre of molecular chaperones, have emerged as pivotal regulators in this pathological cascade. This review synthesizes the latest research on HSPs in CIRI from 2013 to 2024 focusing on their multifaceted roles and therapeutic potential. We explore the diverse cellular functions of HSPs, including regulation of oxidative stress, apoptosis, necroptosis, ferroptosis, autophagy, neuroinflammation, and blood-brain barrier integrity. Key HSPs, such as HSP90, HSP70, HSP32, HSP60, HSP47, and small HSPs, are investigated for their specific mechanisms of action in CIRI. Potential therapeutic strategies targeting HSPs, including HSP inhibitors, traditional Chinese medicine components, and gene therapy, are discussed. This review provides a comprehensive understanding of HSPs in CIRI and offers insights into the development of innovative neuroprotective treatments.
Collapse
Affiliation(s)
- Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Lai ZM, Li CL, Zhang JX, Ao X, Fei CS, Xiang X, Chen YL, Chen ZS, Tan RQ, Wang L, Zhang ZM. Unveiling MiR-3085-3p as a modulator of cartilage degeneration in facet joint osteoarthritis: A novel therapeutic target. J Orthop Translat 2025; 50:235-247. [PMID: 39895864 PMCID: PMC11786202 DOI: 10.1016/j.jot.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 02/04/2025] Open
Abstract
Background Low back pain (LBP) is generally caused by lumbar degeneration without effective treatment. Lumbar degeneration is influenced by aberrant axial mechanical stress (MS), with facet joint osteoarthritis (FJOA) representing one of its primary pathological manifestations. MicroRNA (miRNA), functioning as an early intermediate in the transcription process, has frequently been demonstrated to serve as a critical mediator linking mechanical stress perception with cellular processes such as growth, development, aging, and apoptosis. We hypothesized that miR-3085-3p regulates chondrocyte apoptosis under mechanical stress, influencing FJOA and serving as a key regulator. Methods The severity of cartilage degeneration in bipedal standing models (BSM) was established and validated through micro-CT and histopathology. Cyclic tensile strain experiments (CTS) were conducted on the ATDC5 cell line to simulate MS. In situ hybridization was utilized to assess the expression levels of miR-3085-3p in degraded facet articular cartilage. The role of miR-3085-3p and its interaction with the downstream mRNA target Hspb6 were investigated through a combination of bioinformatic analysis, quantitative real-time polymerase chain reaction, western blotting, immunofluorescence, and luciferase assay. In vivo experiments on BSM, the functional impact of miR-3085-3p was further examined through transfection with adeno-associated virus (AAV). Results It was observed that miR-3085-3p induced endoplasmic reticulum (ER) stress and apoptosis in chondrocytes and cartilage tissues under MS. The detrimental impact of miR-3085-3p was associated with the downregulation of Hspb6 expression, resulting in disruption of endoplasmic reticulum folding function. Additionally, intra-articular transfection of AAV miR-3085-3p mimics in mice facet joints led to spontaneous cartilage loss, while AAV miRNA-3085-3p sponge administration mitigated FJOA in the murine BSM model. Conclusion Mechanical stress-regulated miR-3085-3p up regulation induced the ER stress and aggravates FJOA development through targeting HSPB6, suggesting miR-3085-3p may be a novel therapeutic target for FJOA.Translational potential of this article: Our study confirmed the elevated expression of miR-3085-3p in lumbar facet joints following mechanical stress loading, suggesting that miR-3085-3p may serve as a biomarker for the clinical management of FJOA. Additionally, we demonstrated that the knockdown of miR-3085-3p in animal facet joints mitigated facet joint degeneration, thereby identifying a potential therapeutic target for FJOA.
Collapse
Affiliation(s)
| | | | - Jun-xiong Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng-shuo Fei
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-lin Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-sen Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-qian Tan
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-min Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
4
|
Shirai R, Yamauchi J. Emerging Evidence of Golgi Stress Signaling for Neuropathies. Neurol Int 2024; 16:334-348. [PMID: 38525704 PMCID: PMC10961782 DOI: 10.3390/neurolint16020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
The Golgi apparatus is an intracellular organelle that modifies cargo, which is transported extracellularly through the nucleus, endoplasmic reticulum, and plasma membrane in order. First, the general function of the Golgi is reviewed and, then, Golgi stress signaling is discussed. In addition to the six main Golgi signaling pathways, two pathways that have been increasingly reported in recent years are described in this review. The focus then shifts to neurological disorders, examining Golgi stress reported in major neurological disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The review also encompasses findings related to other diseases, including hypomyelinating leukodystrophy, frontotemporal spectrum disorder/amyotrophic lateral sclerosis, microcephaly, Wilson's disease, and prion disease. Most of these neurological disorders cause Golgi fragmentation and Golgi stress. As a result, strong signals may act to induce apoptosis.
Collapse
Affiliation(s)
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| |
Collapse
|
5
|
Li Z, Zhang W, Xu J, Mo X. Cdk1 protects against oxygen-glucose deprivation and reperfusion-induced Golgi fragmentation and apoptosis through mediating GM130 phosphorylation. J Mol Histol 2023; 54:609-619. [PMID: 37831422 DOI: 10.1007/s10735-023-10164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
Increasing evidence has indicated that the Golgi apparatus (GA) is involved in the development of cerebral ischemia-reperfusion (IR) injury. Finding effective neuroprotective agents targeting GA has become a priority in the treatment of ischemic stroke. GM130, a key structural protein present on the cis-face of the GA, maintains its structure through its phosphorylation and dephosphorylation. However, the molecular mechanisms by which GM130 regulates IR-induced neuronal apoptosis are not well elucidated. Mouse neuroblastoma Neuro2a (N2A) cells were subjected to oxygen-glucose deprivation and reperfusion (OGDR) insult. Cell proliferation and apoptosis were determined using MTT assay, TUNEL staining, and flow cytometry. GA morphology was detected by immunocytochemical staining and immunofluorescence microscopy. GA-related protein and mRNA levels were detected by WB and qPCR, respectively. Treatment with Purvalanol A, an effective Cdk1 inhibitor, and transfection of Cdk1-shRNA were carried out to inhibit OGDR-induced Cdk1 elevation. The results demonstrated that OGDR induced Golgi fragmentation, neuronal apoptosis, GM130 phosphorylation, and p115 cleavage in N2A cells. Cdk1 elevation after OGDR was closely correlated with GM130 phosphorylation, not p115. Inhibition of Cdk1 significantly attenuated OGDR-induced Golgi fragmentation and cell apoptosis. Cdk1 interacted with GM130 and decreased its phosphorylation on the serine 25 site in N2A cells exposed to OGDR. The present findings reveal that Cdk1 protects against IR-induced GA fragmentation and apoptosis, likely through the mediation of GM130 phosphorylation. This neuroprotective potential of Cdk1 against IR insult and the underlying mechanism will pave the way for potential clinical applications targeting the GA organelle for cerebral IR-related disorders.
Collapse
Affiliation(s)
- Zheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ji Xu
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
6
|
Voogd EJHF, Frega M, Hofmeijer J. Neuronal Responses to Ischemia: Scoping Review of Insights from Human-Derived In Vitro Models. Cell Mol Neurobiol 2023; 43:3137-3160. [PMID: 37380886 PMCID: PMC10477161 DOI: 10.1007/s10571-023-01368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023]
Abstract
Translation of neuroprotective treatment effects from experimental animal models to patients with cerebral ischemia has been challenging. Since pathophysiological processes may vary across species, an experimental model to clarify human-specific neuronal pathomechanisms may help. We conducted a scoping review of the literature on human neuronal in vitro models that have been used to study neuronal responses to ischemia or hypoxia, the parts of the pathophysiological cascade that have been investigated in those models, and evidence on effects of interventions. We included 147 studies on four different human neuronal models. The majority of the studies (132/147) was conducted in SH-SY5Y cells, which is a cancerous cell line derived from a single neuroblastoma patient. Of these, 119/132 used undifferentiated SH-SY5Y cells, that lack many neuronal characteristics. Two studies used healthy human induced pluripotent stem cell derived neuronal networks. Most studies used microscopic measures and established hypoxia induced cell death, oxidative stress, or inflammation. Only one study investigated the effect of hypoxia on neuronal network functionality using micro-electrode arrays. Treatment targets included oxidative stress, inflammation, cell death, and neuronal network stimulation. We discuss (dis)advantages of the various model systems and propose future perspectives for research into human neuronal responses to ischemia or hypoxia.
Collapse
Affiliation(s)
- Eva J H F Voogd
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.
| | - Monica Frega
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
7
|
Ma HH, Wen JR, Fang H, Su S, Wan C, Zhang C, Lu FM, Fan LL, Wu GL, Zhou ZY, Qiao LJ, Zhang SJ, Cai YF. Hydroxysafflor Yellow A Exerts Neuroprotective Effect by Reducing Aβ Toxicity Through Inhibiting Endoplasmic Reticulum Stress in Oxygen-Glucose Deprivation/Reperfusion Cell Model. Rejuvenation Res 2023; 26:57-67. [PMID: 36734410 DOI: 10.1089/rej.2022.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ischemia stroke is thought to be one of the vascular risks associated with neurodegenerative diseases, such as Alzheimer's disease (AD). Hydroxysafflor yellow A (HSYA) has been reported to protect against stroke and AD, while the underlying mechanism remains unclear. In this study, SH-SY5Y cell model treated with oxygen-glucose deprivation/reperfusion (OGD/R) was used to explore the potential mechanism of HSYA. Results from cell counting kit-8 (CCK-8) showed that 10 μM HSYA restored the cell viability after OGD 2 hours/R 24 hours. HSYA reduced the levels of malondialdehyde and reactive oxygen species, while improved the levels of superoxide dismutase and glutathione peroxidase. Furthermore, apoptosis was inhibited, and the expression of brain-derived neurotrophic factor was improved after HSYA treatment. In addition, the expression levels of amyloid-β peptides (Aβ) and BACE1 were decreased by HSYA, as well as the expression levels of binding immunoglobulin heavy chain protein, PKR-like endoplasmic reticulum (ER) kinase pathway, and activating transcription factor 6 pathway, whereas the expression level of protein disulfide isomerase was increased. Based on these results, HSYA might reduce Aβ toxicity after OGD/R by interfering with apoptosis, oxidation, and neurotrophic factors, as well as relieving ER stress.
Collapse
Affiliation(s)
- Hui-Han Ma
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jun-Ru Wen
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Fang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shan Su
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Wan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chao Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fang-Mei Lu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ling-Ling Fan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zi-Yi Zhou
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Castelli V, Antonucci I, d'Angelo M, Tessitore A, Zelli V, Benedetti E, Ferri C, Desideri G, Borlongan C, Stuppia L, Cimini A. Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Transl Med 2021; 10:251-266. [PMID: 33027557 PMCID: PMC7848376 DOI: 10.1002/sctm.20-0268] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cells offer the basis for the promotion of robust new therapeutic approaches for a variety of human disorders. There are still many limitations to be overcome before clinical therapeutic application, including a better understanding of the mechanism by which stem cell therapies may lead to enhanced recovery. In vitro investigations are necessary to dissect the mechanisms involved and to support the potential development in stem cell-based therapies. In spite of growing interest in human amniotic fluid stem cells, not much is known about the characteristics of their secretome and regarding the potential neuroprotective mechanism in different pathologies, including stroke. To get more insight on amniotic fluid cells therapeutic potential, signal transduction pathways activated by human amniotic fluid stem cells (hAFSCs)-derived secretome in a stroke in vitro model (ischemia/reperfusion [I/R] model) were investigated by Western blot. Moreover, miRNA expression in the exosomal fraction of the conditioned medium was analyzed. hAFSCs-derived secretome was able to activate pro-survival and anti-apoptotic pathways. MicroRNA analysis in the exosomal component revealed a panel of 16 overexpressed miRNAs involved in the regulation of coherent signaling pathways. In particular, the pathways of relevance in ischemia/reperfusion, such as neurotrophin signaling, and those related to neuroprotection and neuronal cell death, were analyzed. The results obtained strongly point toward the neuroprotective effects of the hAFSCs-conditioned medium in the in vitro stroke model here analyzed. This can be achieved by the modulation and activation of pro-survival processes, at least in part, due to the activity of secreted miRNAs.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Ivana Antonucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences“G. d'Annunzio” UniversityChieti‐PescaraItaly
- Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ UniversityChieti‐PescaraItaly
| | - Michele d'Angelo
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences (DISCAB)University of L'AquilaL'AquilaItaly
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences (DISCAB)University of L'AquilaL'AquilaItaly
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Claudio Ferri
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | | | - Cesar Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFloridaUSA
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences“G. d'Annunzio” UniversityChieti‐PescaraItaly
- Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ UniversityChieti‐PescaraItaly
| | - Annamaria Cimini
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- Sbarro Institute for Cancer Research and Molecular Medicine and Centre for BiotechnologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
Effect of Arginine on Chaperone-Like Activity of HspB6 and Monomeric 14-3-3ζ. Int J Mol Sci 2020; 21:ijms21062039. [PMID: 32188159 PMCID: PMC7139691 DOI: 10.3390/ijms21062039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022] Open
Abstract
The effect of protein chaperones HspB6 and the monomeric form of the protein 14-3-3ζ (14-3-3ζm) on a test system based on thermal aggregation of UV-irradiated glycogen phosphorylase b (UV-Phb) at 37 °C and a constant ionic strength (0.15 M) was studied using dynamic light scattering. A significant increase in the anti-aggregation activity of HspB6 and 14-3-3ζm was demonstrated in the presence of 0.1 M arginine (Arg). To compare the effects of these chaperones on UV-Phb aggregation, the values of initial stoichiometry of the chaperone-target protein complex (S0) were used. The analysis of the S0 values shows that in the presence of Arg fewer chaperone subunits are needed to completely prevent aggregation of the UV-Phb subunit. The changes in the structures of HspB6 and 14-3-3ζm induced by binding of Arg were evaluated by the fluorescence spectroscopy and differential scanning calorimetry. It was suggested that Arg caused conformational changes in chaperone molecules, which led to a decrease in the thermal stability of protein chaperones and their destabilization.
Collapse
|