1
|
Cirilli I, Orlando P, Hrelia S, Marcheggiani F, Tiano L, Beghelli D, Angeloni C. Endogenous coenzyme Q content and exogenous bioavailability in D. melanogaster. Heliyon 2024; 10:e37854. [PMID: 39315151 PMCID: PMC11417581 DOI: 10.1016/j.heliyon.2024.e37854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/06/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Development and aging significantly impact the cellular levels of Coenzyme Q (CoQ), which is associated with both pathological and physiological conditions. Aim of this study was to describe the CoQ status throughout the lifetime of Drosophila melanogaster, a well-established model in aging studies. CoQ9 and CoQ distribution was analysed across different body segments and various life stages in both male and female flies. The results indicate that CoQ9 is the predominant isoform in every phase of flies' life cycle, with the highest concentrations observed in the thorax. We noted distinct trends in CoQ distribution during aging, which varied according to sex and body segments (head, thorax, and abdomen). Supplementation with two concentrations of CoQ9 and CoQ10 (15 μM and 75 μM) for 2 weeks induced a segment- and sex-specific CoQ uptake. Although 75 μM CoQ10 was more effective in modulating the CoQ status, lifelong treatment with this concentration did not affect the longevity of the flies.
Collapse
Affiliation(s)
- Ilenia Cirilli
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921, Rimini, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921, Rimini, Italy
| |
Collapse
|
2
|
Diab F, Beghelli D, Nuccitelli A, Lupidi G, Khalil M, Portincasa P, Vergani L. Supplementation with Thymbra spicata extract ameliorates lifespan, body-weight gain and Paraquat-induced oxidative stress in Drosophila melanogaster: An age- and sex-related study. J Funct Foods 2024; 114:106078. [DOI: 10.1016/j.jff.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
3
|
Pterostilbene Promotes Mean Lifespan in Both Male and Female Drosophila Melanogaster Modulating Different Proteins in the Two Sexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1744408. [PMID: 35222791 PMCID: PMC8865974 DOI: 10.1155/2022/1744408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.
Collapse
|
4
|
Price BE, Yoon JS, Choi MY, Lee JC. Effects of nonnutritional sugars on lipid and carbohydrate content, physiological uptake, and excretion in Drosophila suzukii. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21860. [PMID: 34865250 DOI: 10.1002/arch.21860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The nonnutritive sugar, erythritol, has the potential to be a human-safe management tool for the small fruits and cherry pest, Drosophila suzukii, or spotted-wing drosophila. Feeding on erythritol decreases fly survival and oviposition by starving and creating an osmotic imbalance in the body. Recently, we demonstrated that erythritol combined with another nonnutritive sugar, sucralose, was fed upon more than erythritol alone and hastens D. suzukii mortality. This suggests that sucralose is a suitable nonnutritive phagostimulant alternative to sucrose. Although promising, the nutritional and physiological impacts of sucralose on D. suzukii are unknown. In this study, we investigated whether sucralose is metabolized or excreted by D. suzukii when fed various erythritol, sucrose, and sucralose formulations. We found that sucralose cannot be metabolized or converted into any nutritional substitutes or storage carbohydrates in D. suzukii. Instead, sucralose molecules were largely accumulated in the hemolymph and slowly excreted from the body, creating a significant osmotic imbalance in D. suzukii. To excrete unused sugars, flies will use their own body fluids to restore homeostasis, resulting in losing a substantial amount of body weight and becoming desiccated in the process. In summary, ingesting sucralose leads to starvation and hyperosmotic pressure in the body, causing a decrease in fitness. With confirmation of sucralose being non-metabolizable and phagostimulative to D. suzukii, the erythritol+sucralose formulation is a promising insecticide for growers to use.
Collapse
Affiliation(s)
- Briana E Price
- Horticultural Crops Research Unit, USDA ARS, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - June-Sun Yoon
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA ARS, Corvallis, Oregon, USA
| | - Jana C Lee
- Horticultural Crops Research Unit, USDA ARS, Corvallis, Oregon, USA
| |
Collapse
|
5
|
Lee SH, Choe DH, Lee CY. The Impact of Artificial Sweeteners on Insects. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1-13. [PMID: 33155652 DOI: 10.1093/jee/toaa244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Artificial sweeteners are sweet-tasting additives found in consumable products as substitutes for naturally occurring sugars. They are derived from plant extracts or manufactured by chemical synthesis. Ingestion of sweeteners by insects can lead to significant physiological effects, such as mortality, decreased fecundity, and behavioral change. Due to their low toxicity toward humans and the issues associated with conventional insecticide usage, artificial sweeteners have recently gained attention for their potential use as biorational insecticides. Here, we review their impact on insects and potential as novel insecticides.
Collapse
Affiliation(s)
- Shao-Hung Lee
- Department of Entomology, University of California, Riverside, CA
| | - Dong-Hwan Choe
- Department of Entomology, University of California, Riverside, CA
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA
| |
Collapse
|
6
|
Barrett M, Caponera V, McNair C, O'Donnell S, Marenda DR. Potential for Use of Erythritol as a Socially Transferrable Ingested Insecticide for Ants (Hymenoptera: Formicidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1382-1388. [PMID: 32048713 DOI: 10.1093/jee/toaa019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Ants are significant structural and agricultural pests, generating a need for human-safe and effective insecticides for ant control. Erythritol, a sugar alcohol used in many commercial food products, reduces survival in diverse insect taxa including fruit flies, termites, and mosquitos. Erythritol also decreases longevity in red imported fire ants; however, its effects on other ant species and its ability to be transferred to naïve colony members at toxic doses have not been explored. Here, we show that erythritol decreases survival in Tetramorium immigrans Santschi (Hymenoptera: Formicidae) in a concentration-dependent manner. Access to ad-libitum water reduced the toxic effects of erythritol, but worker mortality was still increased over controls with ad-lib water. Foraging T. immigrans workers transferred erythritol at lethal levels to nest mates that had not directly ingested erythritol. Similar patterns of mortality following erythritol ingestion were observed in Formica glacialis Wheeler (Hymenoptera: Formicidae), Camponotus subarbatus Emery (Hymenoptera: Formicidae), and Camponotus chromaiodes Bolton (Hymenoptera: Formicidae). These findings suggest that erythritol may be a highly effective insecticide for several genera of ants. Erythritol's potential effectiveness in social insect control is augmented by its spread at lethal levels through ant colonies via social transfer (trophallaxis) between workers.
Collapse
Affiliation(s)
- Meghan Barrett
- Department of Biology, Drexel University, Philadelphia, PA
| | - Virginia Caponera
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA
| | - Cheyenne McNair
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA
| | - Daniel R Marenda
- Department of Biology, Drexel University, Philadelphia, PA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
7
|
Barrett M, Fiocca K, Waddell EA, McNair C, O'Donnell S, Marenda DR. Larval mannitol diets increase mortality, prolong development and decrease adult body sizes in fruit flies ( Drosophila melanogaster). Biol Open 2020; 8:bio.047084. [PMID: 31822472 PMCID: PMC6955208 DOI: 10.1242/bio.047084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of polyols to disrupt holometabolous insect development has not been studied and identifying compounds in food that affect insect development can further our understanding of the pathways that connect growth rate, developmental timing and body size in insects. High-sugar diets prolong development and generate smaller adult body sizes in Drosophila melanogaster We tested for concentration-dependent effects on development when D. melanogaster larvae are fed mannitol, a polyalcohol sweetener. We also tested for amelioration of developmental effects if introduction to mannitol media is delayed past the third instar, as expected if there is a developmental sensitive-period for mannitol effects. Both male and female larvae had prolonged development and smaller adult body sizes when fed increasing concentrations of mannitol. Mannitol-induced increases in mortality were concentration dependent in 0 M to 0.8 M treatments with mortality effects beginning as early as 48 h post-hatching. Larval survival, pupariation and eclosion times were unaffected in 0.4 M mannitol treatments when larvae were first introduced to mannitol 72 h post-hatching (the beginning of the third instar); 72 h delay of 0.8 M mannitol introduction reduced the adverse mannitol effects. The developmental effects of a larval mannitol diet closely resemble those of high-sugar larval diets.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meghan Barrett
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104
| | - Katherine Fiocca
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104
| | - Edward A Waddell
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104
| | - Cheyenne McNair
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA 19104
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104.,Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA 19104
| | - Daniel R Marenda
- Department of Biology, Drexel University, Philadelphia, PA, USA 19104 .,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA, 19104
| |
Collapse
|