1
|
Couëdel M, Dettai A, Guillaume MMM, Bonillo C, Frattini B, Bruggemann JH. Settlement patterns and temporal successions of coral reef cryptic communities affect diversity assessments using autonomous reef monitoring structures (ARMS). Sci Rep 2024; 14:27061. [PMID: 39511226 PMCID: PMC11543703 DOI: 10.1038/s41598-024-76834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Autonomous Reef Monitoring Structures (ARMS) are used worldwide to assess cryptic diversity, especially on coral reefs. They were developed as standardised tools, yet conditions of deployment, such as immersion duration and/or deployment and retrieval seasons, vary among studies. Here we studied temporal and seasonal variability in coral reef cryptic communities sampled with 15 ARMS on a single coral reef slope site at Reunion Island, Southwest Indian Ocean. Settlement patterns and temporal succession of Eukaryote communities were investigated across three immersion times (6 months, 1 year, 2 years), two immersion seasons (hot vs. cool) and three fractions (500-2000 μm, 106-500 μm, sessile) using two genetic markers (18S, COI). Both markers detected different taxa with different resolutions, but broadly similar patterns of community composition and structure. While OTU diversity of communities did not change with immersion time and season, these parameters significantly affected community structure and composition. Our results showed a decrease of the similarity of ARMS communities with duration of immersion, and a strong temporal turnover of species with only a small proportion of the diversity persisting over time. The small proportion of OTUs assigned at phylum level highlights the uniqueness of the Mascarene cryptobiome.
Collapse
Affiliation(s)
- Marion Couëdel
- UMR 9220 ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, 97400, Saint-Denis, La Réunion, France.
| | - Agnes Dettai
- UMR 7205 ISYEB (MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles), Muséum national d'Histoire naturelle (MNHN), 75005, Paris, France
| | - Mireille M M Guillaume
- UMR 8067 BOrEA (MNHN, CNRS 2030, Sorbonne Université, IRD 207, Université de Caen Normandie, Université des Antilles), Muséum national d'Histoire naturelle (MNHN), 75005, Paris, France
- LabEx CORAIL, Université de Perpignan, 66860, Perpignan, France
| | - Céline Bonillo
- UMR 8067 BOrEA (MNHN, CNRS 2030, Sorbonne Université, IRD 207, Université de Caen Normandie, Université des Antilles), Muséum national d'Histoire naturelle (MNHN), 75005, Paris, France
| | - Baptiste Frattini
- UMR 9220 ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, 97400, Saint-Denis, La Réunion, France
- UMR 8067 BOrEA (MNHN, CNRS 2030, Sorbonne Université, IRD 207, Université de Caen Normandie, Université des Antilles), Muséum national d'Histoire naturelle (MNHN), 75005, Paris, France
| | - J Henrich Bruggemann
- UMR 9220 ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, 97400, Saint-Denis, La Réunion, France
- LabEx CORAIL, Université de Perpignan, 66860, Perpignan, France
| |
Collapse
|
2
|
Edmunds PJ. Coral recruitment: patterns and processes determining the dynamics of coral populations. Biol Rev Camb Philos Soc 2023; 98:1862-1886. [PMID: 37340617 DOI: 10.1111/brv.12987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms 'recruit' and 'recruitment' have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis-driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long-term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA, 91330-8303, USA
| |
Collapse
|
3
|
Randrianarivo M, Botosoamananto RL, Guilhaumon F, Penin L, Todinanahary G, Adjeroud M. Effects of Madagascar marine reserves on juvenile and adult coral abundance, and the implication for population regulation. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106080. [PMID: 37422994 DOI: 10.1016/j.marenvres.2023.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Recruitment is a critical component in the dynamics of coral assemblages, and a key question is to determine the degree to which spatial heterogeneity of adults is influenced by pre-vs. post-settlement processes. We analyzed the density of juvenile and adult corals among 18 stations located at three regions around Madagascar, and examined the effects of Marine Protected Areas (MPAs). Our survey did not detect a positive effect of MPAs on juveniles, except for Porites at the study scale. The MPA effect was more pronounced for adults, notably for Acropora, Montipora, Seriatopora, and Porites at the regional scale. For most dominant genera, densities of juveniles and adults were positively correlated at the study scale, and at least at one of the three regions. These outcomes suggest recruitment-limitation relationships for several coral taxa, although differences in post-settlement events may be sufficiently strong to distort the pattern established at settlement for other populations. The modest benefits of MPAs on the density of juvenile corals demonstrated here argue in favor of strengthening conservation measures more specifically focused to protect recruitment processes.
Collapse
Affiliation(s)
- Mahery Randrianarivo
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Radonirina Lebely Botosoamananto
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - François Guilhaumon
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Lucie Penin
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France; Laboratoire d'Excellence "CORAIL", Paris, France
| | - Gildas Todinanahary
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
| | - Mehdi Adjeroud
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de la Nouvelle-Calédonie, Perpignan, France; Laboratoire d'Excellence "CORAIL", Paris, France; PSL Université Paris, UAR 3278, CRIOBE EPHE-UPVD-CNRS, Perpignan, France.
| |
Collapse
|
4
|
A contemporary baseline of Madagascar's coral assemblages: Reefs with high coral diversity, abundance, and function associated with marine protected areas. PLoS One 2022; 17:e0275017. [PMID: 36264983 PMCID: PMC9584525 DOI: 10.1371/journal.pone.0275017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Madagascar is a major hotspot of biodiversity in the Western Indian Ocean, but, as in many other regions, coral reefs surrounding the island confront large-scale disturbances and human-induced local stressors. Conservation actions have been implemented with encouraging results for fisheries, though their benefit on coral assemblages has never been rigorously addressed. In this context, we analyzed the multiscale spatial variation of the composition, generic richness, abundance, life history strategies, and cover of coral assemblages among 18 stations placed at three regions around the island. The potential influences of marine protected areas (MPAs), algal cover, substrate rugosity, herbivorous fish biomass, and geographic location were also analyzed. Our results highlight the marked spatial variability, with variation at either or both regional and local scales for all coral descriptors. The northeast coastal region of Masoala was characterized by the high abundance of coral colonies, most notably of the competitive Acropora and Pocillopora genera and stress-tolerant taxa at several stations. The southwest station of Salary Nord was distinguished by lower abundances, with depauperate populations of competitive taxa. On the northwest coast, Nosy-Be was characterized by higher diversity and abundance as well as by high coral cover (~42-70%) recorded at unfished stations. Results clearly underline the positive effects of MPAs on all but one of the coral descriptors, particularly at Nosy-Be where the highest contrast between fished and unfished stations was observed. Biomass of herbivorous fishes, crustose coralline algae cover, and substrate rugosity were also positively related to several coral descriptors. The occurrence of reefs with high diversity, abundance, and cover of corals, including the competitive Acropora, is a major finding of this study. Our results strongly support the implementation of locally managed marine areas with strong involvement by primary users, particularly to assist in management in countries with reduced logistic and human resources such as Madagascar.
Collapse
|
5
|
Urbina‐Barreto I, Elise S, Guilhaumon F, Bruggemann JH, Pinel R, Kulbicki M, Vigliola L, Mou‐Tham G, Mahamadaly V, Facon M, Bureau S, Peignon C, Dutrieux E, Garnier R, Penin L, Adjeroud M. Underwater photogrammetry reveals new links between coral reefscape traits and fishes that ensure key functions. Ecosphere 2022. [DOI: 10.1002/ecs2.3934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Isabel Urbina‐Barreto
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie Saint‐Denis France
- Creocean OI Sainte Clotilde France
| | - Simon Elise
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie Saint‐Denis France
| | - François Guilhaumon
- MARBEC, IRD, CNRS, Université de Montpellier, Ifremer Montpellier France
- IRD Saint‐Denis France
| | - J. Henrich Bruggemann
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie Saint‐Denis France
- Laboratoire d'Excellence CORAIL Perpignan France
| | | | - Michel Kulbicki
- Laboratoire d'Excellence CORAIL Perpignan France
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie, Université de Perpignan Nouméa France
| | - Laurent Vigliola
- Laboratoire d'Excellence CORAIL Perpignan France
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie Nouméa New Caledonia
| | - Gerard Mou‐Tham
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie Nouméa New Caledonia
| | | | | | - Sophie Bureau
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie Saint‐Denis France
| | - Christophe Peignon
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie Nouméa New Caledonia
| | | | | | - Lucie Penin
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie Saint‐Denis France
- Laboratoire d'Excellence CORAIL Perpignan France
| | - Mehdi Adjeroud
- Laboratoire d'Excellence CORAIL Perpignan France
- UMR 9220 ENTROPIE, Université de la Réunion, CNRS, IRD, IFREMER, Université de la Nouvelle‐Calédonie, Université de Perpignan Nouméa France
- PSL Université Paris, USR 3278 CRIOBE—EPHE‐UPVD‐CNRS Perpignan France
| |
Collapse
|
6
|
Harper LM, Huebner LK, O’Cain ED, Ruzicka R, Gleason DF, Fogarty ND. Methodological recommendations for assessing scleractinian and octocoral recruitment to settlement tiles. PeerJ 2021; 9:e12549. [PMID: 35003917 PMCID: PMC8686733 DOI: 10.7717/peerj.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022] Open
Abstract
Quantifying recruitment of corals is important for evaluating their capacity to recover after disturbances through natural processes, yet measuring recruitment rates in situ is challenging due to the minute size of the study organism and the complexity of benthic communities. Settlement tiles are widely used in studies of coral recruitment because they can be viewed under a microscope to enhance accuracy, but methodological choices such as the rugosity of tiles used and when and how to scan tiles for recruits post-collection may cause inconsistencies in measured recruitment rates. We deployed 2,880 tiles with matching rugosity on top and bottom surfaces to 30 sites along the Florida Reef Tract for year-long saturations during a three year study. We scanned the top and bottom surfaces of the same tiles for scleractinian recruits before (live scans) and after treating tiles with sodium hypochlorite (corallite scans). Recruit counts were higher in corallite than live scans, indicating that scleractinian recruitment rates should not be directly compared between studies using live scans and those scanning tiles which have been processed to remove fouling material. Recruit counts also were higher on tile tops in general, but the proportion of settlement to the top and bottom surfaces varied significantly by scleractinian family. Thus, biases may be introduced in recruitment datasets by differences in tile rugosity or by only scanning a subset of tile surfaces. Finally, we quantified octocoral recruitment during live scans and found they preferentially settled to tile tops. We recommend that recruitment tile studies include corallite scans for scleractinian skeletons, deploy tiles with matching rugosity on top and bottom surfaces, and scan all tile surfaces.
Collapse
Affiliation(s)
- Leah M. Harper
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, United States of America
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center, Edgewater, MD, United States of America
| | - Lindsay K. Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Saint Petersburg, FL, United States of America
| | - Elijah D. O’Cain
- James H. Oliver, Jr., Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA, United States of America
- Coastal Resources Division, Georgia Department of Natural Resources, Brunswick, GA, United States of America
| | - Rob Ruzicka
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Saint Petersburg, FL, United States of America
| | - Daniel F. Gleason
- James H. Oliver, Jr., Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA, United States of America
| | - Nicole D. Fogarty
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, United States of America
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, United States of America
| |
Collapse
|
7
|
Koester A, Ford AK, Ferse SCA, Migani V, Bunbury N, Sanchez C, Wild C. First insights into coral recruit and juvenile abundances at remote Aldabra Atoll, Seychelles. PLoS One 2021; 16:e0260516. [PMID: 34874982 PMCID: PMC8651144 DOI: 10.1371/journal.pone.0260516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Coral recruitment and successive growth are essential for post-disturbance reef recovery. As coral recruit and juvenile abundances vary across locations and under different environmental regimes, their assessment at remote, undisturbed reefs improves our understanding of early life stage dynamics of corals. Here, we first explored changes in coral juvenile abundance across three locations (lagoon, seaward west and east) at remote Aldabra Atoll (Seychelles) between 2015 and 2019, which spanned the 2015/16 global coral bleaching event. Secondly, we measured variation in coral recruit abundance on settlement tiles from two sites (lagoon, seaward reef) during August 2018-August 2019. Juvenile abundance decreased from 14.1 ± 1.2 to 7.4 ± 0.5 colonies m-2 (mean ± SE) during 2015-2016 and increased to 22.4 ± 1.2 colonies m-2 during 2016-2019. Whilst juvenile abundance increased two- to three-fold at the lagoonal and seaward western sites during 2016-2018 (from 7.7-8.3 to 17.3-24.7 colonies m-2), increases at the seaward eastern sites occurred later (2018-2019; from 5.8-6.9 to 16.6-24.1 colonies m-2). The composition of coral recruits on settlement tiles was dominated by Pocilloporidae (64-92% of all recruits), and recruit abundance was 7- to 47-fold higher inside than outside the lagoon. Recruit abundance was highest in October-December 2018 (2164 ± 453 recruits m-2) and lowest in June-August 2019 (240 ± 98 recruits m-2). As Acroporid recruit abundance corresponded to this trend, the results suggest that broadcast spawning occurred during October-December, when water temperature increased from 26 to 29°C. This study provides the first published record on coral recruit abundance in the Seychelles Outer Islands, indicates a rapid (2-3 years) increase of juvenile corals following a bleaching event, and provides crucial baseline data for future research on reef resilience and connectivity within the region.
Collapse
Affiliation(s)
- Anna Koester
- Marine Ecology Department, Faculty of Biology & Chemistry, University of Bremen, Bremen, Germany
- Seychelles Islands Foundation, Victoria, Mahé, Seychelles
| | - Amanda K. Ford
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific, Suva, Fiji
| | - Sebastian C. A. Ferse
- Marine Ecology Department, Faculty of Biology & Chemistry, University of Bremen, Bremen, Germany
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Valentina Migani
- Institute for Ecology, Faculty of Biology & Chemistry, University of Bremen, Bremen, Germany
| | - Nancy Bunbury
- Seychelles Islands Foundation, Victoria, Mahé, Seychelles
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Cheryl Sanchez
- Seychelles Islands Foundation, Victoria, Mahé, Seychelles
- Department of Biology, University of Pisa, Pisa, Italy
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology & Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
8
|
Diversity, structure and demography of coral assemblages on underwater lava flows of different ages at Reunion Island and implications for ecological succession hypotheses. Sci Rep 2020; 10:20821. [PMID: 33257705 PMCID: PMC7705710 DOI: 10.1038/s41598-020-77665-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 11/10/2020] [Indexed: 11/12/2022] Open
Abstract
Understanding colonization of new habitats and ecological successions is key to ecosystem conservation. However, studies on primary successions are scarce for reef-building corals, due to the rarity of newly formed substratum and the long-term monitoring efforts required for their long life cycle and slow growth rate. We analysed data describing the diversity, structure and demography of coral assemblages on lava flows of different ages and coral reefs at Reunion Island, to evaluate the strength and mechanisms of succession, and its agreement to the theoretical models. No significant differences were observed between the two habitats for most structure and demographic descriptors. In contrast, species richness and composition differentiated coral reefs from lava flows, but were not related to the age of the lava flow. We observed a strong dominance of Pocillopora colonies, which underline the opportunistic nature of this taxa, with life-history traits advantageous to dominance on primary and secondary successional stages. Although some results argue in favor of the tolerance model of succession, the sequences of primary successions as theorized in other ecosystems were difficult to observe, which is likely due to the high frequency and intensity of disturbances at Reunion, that likely distort or set back the expected successional sequences.
Collapse
|