1
|
Montanucci L, Iori S, Lahtela-Kakkonen M, Pauletto M, Giantin M, Dacasto M. Impact of Missense Mutations on AFB1 Metabolism in Bovine Cytochrome P4503A Isoforms: A Computational Mutagenesis and Molecular Docking Analysis. Int J Mol Sci 2024; 25:12529. [PMID: 39684241 DOI: 10.3390/ijms252312529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Cytochrome P450 3A (CYP3A) enzymes catalyze the metabolism of a wide range of endogenous and exogenous compounds. Genetic variations in the 3 CYP3A isoforms (CYP3A28, CYP3A74, and CYP3A76) may influence their expression and activity, leading to inter-individual differences in xenobiotic metabolism. In domestic cattle, understanding how genetic variations modulate CYP3A activity is crucial for both its therapeutic implications (clinical efficacy and adverse drug effects) and food safety (residues in foodstuff). Here, we updated the variant calling of CYP3As in 300 previously sequenced Piedmontese beef cattle, using the most recent reference genome, which contains an updated, longer sequence for CYP3A28. All but one previously identified missense variants were confirmed and a new variant, R105W in CYP3A28, was discovered. Through computational mutagenesis and molecular docking, we computationally predicted the impact of all identified CYP3A variant enzymes on protein stability and their affinity for aflatoxin B1 (AFB1), a potent carcinogen and food contaminant. For CYP3A28, we also computationally predicted its affinity for the probe substrate nifedipine (NIF). We found that CYP3A28 with R105W variant cannot accommodate NIF nor AFB1 in the binding pocket, thus affecting their metabolism. Our work provides computational foundation and prioritized ranking of CYP3A variants for future experimental validations.
Collapse
Affiliation(s)
- Ludovica Montanucci
- Department of Neurology, McGovern Medical School, UTHealth-University of Texas Health Science Centre at Houston, Houston, TX 77030, USA
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | | | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| |
Collapse
|
2
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Montanucci L, Lopparelli RM, Bonsembiante F, Capolongo F, Pauletto M, Dacasto M, Giantin M. Generation and characterization of cytochrome P450 3A74 CRISPR/Cas9 knockout bovine foetal hepatocyte cell line (BFH12). Biochem Pharmacol 2024; 224:116231. [PMID: 38648904 DOI: 10.1016/j.bcp.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Ludovica Montanucci
- Department of Neurology, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, OH 44106, USA
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy.
| |
Collapse
|
3
|
Induction by Phenobarbital of Phase I and II Xenobiotic-Metabolizing Enzymes in Bovine Liver: An Overall Catalytic and Immunochemical Characterization. Int J Mol Sci 2022; 23:ijms23073564. [PMID: 35408925 PMCID: PMC8998613 DOI: 10.3390/ijms23073564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.
Collapse
|
4
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
5
|
Pauletto M, Giantin M, Tolosi R, Bassan I, Barbarossa A, Zaghini A, Dacasto M. Curcumin Mitigates AFB1-Induced Hepatic Toxicity by Triggering Cattle Antioxidant and Anti-inflammatory Pathways: A Whole Transcriptomic In Vitro Study. Antioxidants (Basel) 2020; 9:antiox9111059. [PMID: 33137966 PMCID: PMC7692341 DOI: 10.3390/antiox9111059] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 (AFB1) toxicity in livestock and human beings is a major economic and health concern. Natural polyphenolic substances with antioxidant properties have proven to be effective in ameliorating AFB1-induced toxicity. Here we assessed the potential anti-AFB1 activity of curcumin (pure curcumin, C, and curcumin from Curcuma longa, CL) in a bovine fetal hepatocyte-derived cell line (BFH12). First, we measured viability of cells exposed to AFB1 in presence or absence of curcumin treatment. Then, we explored all the transcriptional changes occurring in AFB1-exposed cells cotreated with curcumin. Results demonstrated that curcumin is effective in reducing AFB1-induced toxicity, decreasing cells mortality by approximately 30%. C and CL induced similar transcriptional changes in BFH12 exposed to AFB1, yet C treatment resulted in a larger number of significant genes compared to CL. The mitigating effects of curcuminoids towards AFB1 toxicity were mainly related to molecular pathways associated with antioxidant and anti-inflammatory response, cancer, and drug metabolism. Investigating mRNA changes induced by curcumin in cattle BFH12 cells exposed to AFB1 will help us to better characterize possible tools to reduce its consequences in this susceptible and economically important food-producing species.
Collapse
Affiliation(s)
- Marianna Pauletto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Mery Giantin
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Roberta Tolosi
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Irene Bassan
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.Z.)
| | - Mauro Dacasto
- Division of Pharmacology and Toxicology, Department of Comparative Biomedicine and Food Science, University of Padova, viale dell’Università 16, Legnaro, 35020 Padova, Italy; (M.P.); (M.G.); (R.T.); (I.B.)
- Correspondence: ; Tel.: +39-049-827-2935
| |
Collapse
|
6
|
Functional impact of cytochrome P450 3A (CYP3A) missense variants in cattle. Sci Rep 2019; 9:19672. [PMID: 31873175 PMCID: PMC6927969 DOI: 10.1038/s41598-019-56271-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A is the most important CYP subfamily in humans, and CYP3A4/CYP3A5 genetic variants contribute to inter-individual variability in drug metabolism. However, no information is available for bovine CYP3A (bCYP3A). Here we described bCYP3A missense single nucleotide variants (SNVs) and evaluated their functional effects. CYP3A28, CYP3A38 and CYP3A48 missense SNVs were identified in 300 bulls of Piedmontese breed through targeted sequencing. Wild-type and mutant bCYP3A cDNAs were cloned and expressed in V79 cells. CYP3A-dependent oxidative metabolism of testosterone (TST) and nifedipine (NIF) was assessed by LC-MS/MS. Finally, SNVs functional impact on TST hydroxylation was measured ex vivo in liver microsomes from individually genotyped animals. Thirteen missense SNVs were identified and validated. Five variants showed differences in CYP3A catalytic activity: three CYP3A28 SNVs reduced TST 6β-hydroxylation; one CYP3A38 variant increased TST 16β-hydroxylation, while a CYP3A48 SNV showed enhanced NIF oxidation. Individuals homozygous for rs384467435 SNV showed a reduced TST 6β-hydroxylation. Molecular modelling showed that most of SNVs were distal to CYP3A active site, suggesting indirect effects on the catalytic activity. Collectively, these findings demonstrate the importance of pharmacogenetics studies in veterinary species and suggest bCYP3A genotype variation might affect the fate of xenobiotics in food-producing species such as cattle.
Collapse
|