1
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
2
|
Rocha MA, Cardoso AL, Martins C, Mello MLS. Sodium valproate affects the expression of p16 INK4a and p21 WAFI/Cip1 cyclin‑dependent kinase inhibitors in HeLa cells. Oncol Lett 2024; 28:432. [PMID: 39049983 PMCID: PMC11268092 DOI: 10.3892/ol.2024.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
p16INK4a and p21WAF1/Cip1 are cyclin-dependent kinase inhibitors involved in cell cycle control, which can function as oncogenes or tumor suppressors, depending on the context of various extracellular and intracellular signals, and cell type. In human papillomavirus-induced cervical cancer, p16 INK4a shows oncogenic activity and functions as a diagnostic marker of cervical neoplasia, whereas p21 WAF1/Cip1 acts as a tumor suppressor and its downregulation is associated with the progression of malignant transformation. Several histone deacetylase (HDAC) inhibitors promote the positive and negative regulation of a number of genes, including p16 INK4a and p21 WAF1/Cip1; however, the effects of sodium valproate (VPA) on these genes and on the proteins they encode remain uncertain in HeLa cervical cancer cells. In the present study, these effects were investigated in HeLa cells treated with 0.5 or 2 mM VPA for 24 h, using reverse transcription-quantitative PCR, confocal microscopy and western blotting. The results revealed a decrease in the mRNA expression levels of p16 INK4a and a tendency for p16INK4a protein abundance to decrease in the presence of 2 mM VPA. By contrast, an increase in the protein expression levels of p21WAF1/Cip1 was detected in the presence of 0.5 and 2 mM VPA. Furthermore, VPA was confirmed to inhibit HDAC activity and induce global hyperacetylation of histone H3. Notably, VPA was shown to suppress p16 INK4a, a biomarker gene of cervical carcinoma, and to increase the abundance of the tumor suppressor protein p21WAF1/Cip1, thus contributing to the basic knowledge regarding the antitumorigenic potential of VPA. Exploration of epigenetic changes associated with the promoters of p16 INK4a and p21 WAF1/Cip1, such as histone H3 methylation, may provide further information and improve the understanding of these findings.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Maria Luiza S. Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
3
|
Bintener T, Pacheco MP, Philippidou D, Margue C, Kishk A, Del Mistro G, Di Leo L, Moscardó Garcia M, Halder R, Sinkkonen L, De Zio D, Kreis S, Kulms D, Sauter T. Metabolic modelling-based in silico drug target prediction identifies six novel repurposable drugs for melanoma. Cell Death Dis 2023; 14:468. [PMID: 37495601 PMCID: PMC10372000 DOI: 10.1038/s41419-023-05955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy. Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4 out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non-responders or upon acquired resistance to conventional melanoma treatments.
Collapse
Affiliation(s)
- Tamara Bintener
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Greta Del Mistro
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumour Diseases, TU-Dresden, Dresden, Germany
| | - Luca Di Leo
- Melanoma Research Team, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Moscardó Garcia
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumour Diseases, TU-Dresden, Dresden, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
4
|
Psilopatis I, Garmpis N, Garmpi A, Vrettou K, Sarantis P, Koustas E, Antoniou EA, Dimitroulis D, Kouraklis G, Karamouzis MV, Marinos G, Kontzoglou K, Nonni A, Nikolettos K, Fleckenstein FN, Zoumpouli C, Damaskos C. The Emerging Role of Histone Deacetylase Inhibitors in Cervical Cancer Therapy. Cancers (Basel) 2023; 15:2222. [PMID: 37190151 PMCID: PMC10137219 DOI: 10.3390/cancers15082222] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Cervical carcinoma is one of the most common cancers among women globally. Histone deacetylase inhibitors (HDACIs) constitute anticancer drugs that, by increasing the histone acetylation level in various cell types, induce differentiation, cell cycle arrest, and apoptosis. The aim of the current review is to study the role of HDACIs in the treatment of cervical cancer. A literature review was conducted using the MEDLINE and LIVIVO databases with a view to identifying relevant studies. By employing the search terms "histone deacetylase" and "cervical cancer", we managed to identify 95 studies published between 2001 and 2023. The present work embodies the most up-to-date, comprehensive review of the literature centering on the particular role of HDACIs as treatment agents for cervical cancer. Both well-established and novel HDACIs seem to represent modern, efficacious anticancer drugs, which, alone or in combination with other treatments, may successfully inhibit cervical cancer cell growth, induce cell cycle arrest, and provoke apoptosis. In summary, histone deacetylases seem to represent promising future treatment targets in cervical cancer.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Gynecology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kleio Vrettou
- Department of Cytopathology, Sismanogleio General Hospital, 15126 Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstathios A. Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kouraklis
- Department of Surgery, Evgenideio Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michail V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Florian N. Fleckenstein
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 13353 Berlin, Germany
| | - Christina Zoumpouli
- Department of Pathology, Sismanogleio General Hospital, 15126 Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
| |
Collapse
|
5
|
Al-Wahaibi LH, Al-Saleem MSM, Ahmed OAA, Fahmy UA, Alhakamy NA, Eid BG, Abdel-Naim AB, Abdel-Mageed WM, AlRasheed MM, Shazly GA. RETRACTED: Optimized Conjugation of Fluvastatin to HIV-1 TAT Displays Enhanced Pro-Apoptotic Activity in HepG2 Cells. Int J Mol Sci 2020; 21:E4138. [PMID: 32531976 PMCID: PMC7312570 DOI: 10.3390/ijms21114138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence indicates that statins reduce the risk of different cancers and inhibit the proliferation of liver cancer cells. This study aims to explore whether the electrostatic conjugation of optimized fluvastatin (FLV) to human immunodeficiency virus type 1 (HIV-1) trans-activator transcription peptide (TAT) would enhance the anti-proliferative activity against HepG2 cells. FLV-TAT conjugation was optimized to achieve the lowest size with highest zeta potential. Nine formulae were constructed, using a factorial design with three factors-FLV concentration, TAT concentration, and pH of the medium-while the responses were zeta potential and size. The optimized formula showed a particle size of 199.24 nm and 29.14 mV zeta potential. Data indicates that conjugation of FLV to TAT (optimized formula) significantly enhances anti-proliferative activity and uptake by HepG2 cells when compared to raw FLV. Flow cytometry showed significant accumulation of cells in the pre-G phase, which highlights higher apoptotic activity. Annexin V staining indicated a significant increase in total cell death in early and late apoptosis. This was confirmed by significantly elevated caspase 3 in cells exposed to FLV-TAT preparation. In conclusion, the FLV-TAT optimized formula exhibited improved anti-proliferative action against HepG2. This is partially attributed to the enhanced apoptotic effects and cellular uptake of FLV.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (L.H.A.-W.); (M.S.M.A.-S.)
| | - Muneera S. M. Al-Saleem
- Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (L.H.A.-W.); (M.S.M.A.-S.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (N.A.A.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (N.A.A.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (B.G.E.); (A.B.A.-N.)
| | - Wael M. Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Maha M. AlRasheed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
6
|
Chen L, Yang F, Li T, Xiao P, Han ZJ, Shu LF, Yuan ZZ, Liu WJ, Long YQ. Extracellular Histone Promotes Prostate Cancer Migration and Epithelial-Mesenchymal Transition through NF-κB-Mediated Inflammatory Responses. Chemotherapy 2020; 64:177-186. [PMID: 31935733 DOI: 10.1159/000504247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/20/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aims to explore the relationship betweenextracellular histone and prostate cancer and its mechanism. METHODS Migration of prostate cancer cells was detected by Transwell. Inflammatory factor expression was investigated by ELISA. Epithelial-mesenchymal transition and expression of NF-κB pathway-related proteins were investigated using Western blotting. RESULTS Under the induction of extracellular histones, the migration rate of prostate cancer cells and the levels of IL-1β, TNF-α, and IL-6 were notably enhanced. Then, expression of E-cadherin was significantly down-regulated, while levels of N-cadherin, vimentin, β-catenin, Snail, p-p65 and p-IκBα were significantly up-regulated, which was reversed by PDTC (pyrrolidine dithiocarbamate). CONCLUSION Extracellular histone significantly promotes the progression of prostate cancer cells via NF-κB pathway-mediated inflammatory responses, which may serve as a novel target for treating prostate cancer.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Fan Yang
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Tao Li
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Pin Xiao
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Zhi-Jun Han
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Lin-Fei Shu
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Zhi-Zhou Yuan
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Wen-Jin Liu
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China
| | - Yong-Qi Long
- Department of Urology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, ZhuZhou, China,
| |
Collapse
|
7
|
He Y, Wang Z, Hu Y, Yi X, Wu L, Cao Z, Wang J. Sensitive and selective monitoring of the DNA damage-induced intracellular p21 protein and unraveling the role of the p21 protein in DNA repair and cell apoptosis by surface plasmon resonance. Analyst 2020; 145:3697-3704. [DOI: 10.1039/c9an02464f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitive and selective monitoring of DNA damage-induced intracellular p21 protein is proposed using surface plasmon resonance. The method serves as a viable means for unraveling the role of p21 protein in DNA repair and cell apoptosis.
Collapse
Affiliation(s)
- Yuhan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Zixiao Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Yuqing Hu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Ling Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- P. R. China 410114
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| |
Collapse
|
8
|
Huang TY, Peng SF, Huang YP, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Yin MC, Huang WW, Chung JG. Combinational treatment of all-trans retinoic acid (ATRA) and bisdemethoxycurcumin (BDMC)-induced apoptosis in liver cancer Hep3B cells. J Food Biochem 2019; 44:e13122. [PMID: 31837044 DOI: 10.1111/jfbc.13122] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/01/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
The effects of two-drug combination, all-trans retinoic acid (ATRA) and bisdemethoxycurcumin (BDMC), on apoptosis induction of liver cancer cells were investigated in human liver Hep 3B cells. Two-drug combination caused a more effective decrease in cell viability and in induction of S phase arrest, DNA damage, and cell apoptosis than that of ATRA or BDMC only. Also, the two-drug combination caused more cells to undergo significantly increased ROS productions when compared to that of ATRA or BDMC only. Results of Western blotting demonstrated that two-drug combination increased expressions of Fas, pro-apoptotic proteins, and active form of caspase-3 and -9, but decreased that of anti-apoptotic proteins and XIAP than that of ATRA or BDMC only in Hep 3B cells. In conclusion, ATRA combined with BDMC enhance cell apoptosis and associated protein expression in Hep 3B cells. PRACTICAL APPLICATIONS: Bisdemethoxycurcumin (BDMC) derived from natural plants, turmeric (Curcuma longa), which had been used for Asia food for thousands of years. All-trans retinoid acid (ATRA) is currently used as a primary treatment for patients with acute promyelocytic leukemia. In previous study, ATRA and BDMC were reported to have anti-inflammatory and anticancer effects. Our results showed that treatment of ATRA combined with BDMC showed more effectively apoptosis than that of ATRA or BDMC only in Hep 3B cells. The findings also provided possible pathways concerning the induction of liver cancer cell apoptosis. We conclude that ATRA combined with BDMC may be potent anticancer agents or adjuvants for liver cancer therapy in the future.
Collapse
Affiliation(s)
- Ting-Yi Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Mei-Chin Yin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
Al Bitar S, Gali-Muhtasib H. The Role of the Cyclin Dependent Kinase Inhibitor p21 cip1/waf1 in Targeting Cancer: Molecular Mechanisms and Novel Therapeutics. Cancers (Basel) 2019; 11:cancers11101475. [PMID: 31575057 PMCID: PMC6826572 DOI: 10.3390/cancers11101475] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
p21cip1/waf1 mediates various biological activities by sensing and responding to multiple stimuli, via p53-dependent and independent pathways. p21 is known to act as a tumor suppressor mainly by inhibiting cell cycle progression and allowing DNA repair. Significant advances have been made in elucidating the potential role of p21 in promoting tumorigenesis. Here, we discuss the involvement of p21 in multiple signaling pathways, its dual role in cancer, and the importance of understanding its paradoxical functions for effectively designing therapeutic strategies that could selectively inhibit its oncogenic activities, override resistance to therapy and yet preserve its tumor suppressive functions.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, and Center for Drug Discovery, American University of Beirut, Beirut 1103, Lebanon.
| | - Hala Gali-Muhtasib
- Department of Biology, and Center for Drug Discovery, American University of Beirut, Beirut 1103, Lebanon.
| |
Collapse
|