1
|
Ahmed SMQ, Laha S, Das R, Ifthikar MA, Das SP. MCM10 expression is linked to cervical cancer aggressiveness. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1009903. [PMID: 39086679 PMCID: PMC11285692 DOI: 10.3389/fmmed.2023.1009903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 08/02/2024]
Abstract
Cervical cancer screening is a challenge mainly in developing countries. In developed countries, both incidence and mortality rates have been decreasing due to well organized screening programs. One of the potential biomarkers being exploited are the minichromosome maintenance proteins (MCMs), which show both specificity and sensitivity. MCM2-7 are involved in DNA replication initiation and elongation, and the MCM subunits are highly expressed in malignant tissues. Unlike other MCMs, MCM10, which is not part of the core helicase complex, is a critical determinant of origin activation and its levels are limiting in cancer cells. In this study, we performed bioinformatic analysis on the expression profile of all DNA replication associated MCM proteins in cervical cancer. MCM10 showed a relatively higher expression profile compared to the other MCMs. The mRNA expression levels of the MCMs were significantly increased in tumour tissues compared to normal, and MCM10 showed a fold change of 3.4. In order to understand if MCM10 is associated with the aggressiveness of cervical cancer, we looked into the mRNA expression pattern of MCM10 in three cervical cancer cell lines and one normal cervical cell line. MCM10 expression was significantly higher in the case of the more aggressive cancer cell line HeLa compared to controls. MCM10, therefore, can serve as a prominent biomarker for cancer progression and thus aid in early detection to control the spread of cancer cells. Our results show that MCM10 expression levels in cervical cancer cell lines are associated with cancer aggressiveness, demonstrating its clinical significance.
Collapse
Affiliation(s)
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mariam Anjum Ifthikar
- Department of Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
2
|
Xie J, Sun Y, Cao Y, Han L, Li Y, Ding B, Gao C, Hao P, Jin X, Chang Y, Song J, Yin D, Ding J. Transcriptomic and Metabolomic Analyses Provide Insights into the Growth and Development Advantages of Triploid Apostichopus japonicus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:151-162. [PMID: 35122573 PMCID: PMC8940865 DOI: 10.1007/s10126-022-10093-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Polyploid breeding is widely used in aquaculture as an important area of new research. We have previously grown Apostichopus japonicus triploids with a growth advantage. The body length, body weight, and aestivation time of triploid and diploid A. japonicus were measured in this study, and the transcriptome and metabolome were used to examine the growth advantage of triploids A. japonicus. The results showed that the proportion of triploid A. japonicus with a body length of 6-12 cm and 12-18 cm was significantly higher than that of diploid A. japonicus, and triploid A. japonicus had a shorter aestivation time (39 days) than diploid (63 days). We discovered 3296 differentially expressed genes (DEGs); 13 DEGs (for example, cyclin-dependent kinase 2) related to growth advantage, immune regulation, and energy storage were screened as potential candidates. According to Gene Ontology (GO) enrichment analysis, DEGs were significantly enriched in the cytoplasm (cellular component), ATP binding process (molecular function), oxidation-reduction process (biological process), and other pathways. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment data, DEGs were significantly enriched in ribosome production and other areas. We discovered 414 significant differential metabolites (SDMs), with 11 important SDMs (for example, nocodazole) linked to a growth advantage. SDMs are significantly enriched in metabolic pathways, as well as other pathways, according to the KEGG enrichment results. According to a combined transcriptome and metabolome analysis, 6 DEGs have regulatory relationships with 11 SDMs, which act on 11 metabolic pathways together. Our results further enrich the biological data of triploid A. japonicus and provide useful resources for genetic improvement of this species.
Collapse
Affiliation(s)
- Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Yi Sun
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Yue Cao
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Lingshu Han
- Ningbo University, Ningbo, Zhejiang, People's Republic of China, 315211
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Beichen Ding
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Chuang Gao
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Xin Jin
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in, Ministry of Agriculture and Rural Affairs, North China's Sea, Dalian Ocean University, Dalian, Liaoning, People's Republic of China, 116023.
| |
Collapse
|
3
|
Li X, Zhang LZ, Yu L, Long ZL, Lin AY, Gou CY. Prenatal diagnosis of Meier-Gorlin syndrome 7: a case presentation. BMC Pregnancy Childbirth 2021; 21:381. [PMID: 34000999 PMCID: PMC8130261 DOI: 10.1186/s12884-021-03868-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
Background Meier-Gorlin syndrome 7 (MGS7) is a rare autosomal recessive condition. We reported a fetus diagnosed with Meier-Gorlin syndrome 7. The antenatal sonographic images were presented, and compound heterozygous mutations of CDC45 on chromosome 22 were identified by whole-exome sequencing (WES). Case presentation Fetal growth restriction (FGR), craniosynostosis, and brachydactyly of right thumb were found in a fetus of 28th gestational weeks. The fetus was diagnosed as MGS7 clinically. After extensive counseling, the couple opted for prenatal diagnosis by cordocentesis and termination of pregnancy. Karyotype analysis and WES were performed. Chromosomal karyotyping showed that the fetus was 46, XY. There were 2 mutations of CDC45, the causal gene of MGS7 on chromosome 22, which were inherited from the couple respectively were identified by WES. Facial dysmorphism, brachydactyly of right thumb, and genitalia abnormally were proved by postpartum autopsy, and craniosynostosis was confirmed by three-dimensional computed tomography (3D-CT) reconstruction. Conclusions It is possible to detect multiple clinical features of Meier-Gorlin syndrome in prenatal sonography. Deteriorative FGR complicated with craniosynostosis indicates MGS7. Combination of 2D and 3D ultrasonography helps to detect craniosynostosis. The affected fetus was confirmed a compound heterozygote of CDC45 related MGS by whole-exome sequencing, which is critical in identifying rare genetic diseases.
Collapse
Affiliation(s)
- Xia Li
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China
| | - Lan-Zhen Zhang
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China.
| | - Lin Yu
- Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhao-Lua Long
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China
| | - An-Yun Lin
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China
| | - Chen-Yu Gou
- Department of Obstetrics, the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, 510260, Guangdong Province, China. .,Fetal Medicine Center, Department of Obstetrics and Gynecology, Sixth Affiliated Hospital of Sun Yat-Sen University, No. 26 Yuancun Erheng Road, Guangzhou, 510655, China.
| |
Collapse
|
4
|
Knapp KM, Fellows B, Aggarwal S, Dalal A, Bicknell LS. A synonymous variant in a non-canonical exon of CDC45 disrupts splicing in two affected sibs with Meier-Gorlin syndrome with craniosynostosis. Eur J Med Genet 2021; 64:104182. [PMID: 33639314 DOI: 10.1016/j.ejmg.2021.104182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/10/2020] [Accepted: 01/23/2021] [Indexed: 11/30/2022]
Abstract
Disruption of the initiation of DNA replication is significantly associated with Meier-Gorlin syndrome (MGORS), an autosomal recessive condition of reduced growth, microtia and patellar a/hypoplasia. Biallelic mutations in CDC45, a member of the pre-initiation complex in DNA replication, cause a spectrum of phenotypes ranging from MGORS with craniosynostosis, through to isolated short stature and craniosynostosis. Here we report two affected sibs with MGORS and craniosynostosis, with biallelic variants in CDC45 identified by 10X Chromium whole genome sequencing. One variant is a frameshift mutation, predicted to be pathogenic, and is inherited in trans with a synonymous variant in a non-canonical exon (exon 7) of CDC45. An in vitro splicing assay showed that while the canonical CDC45 exon 6-exon 8 transcript (with skipping of exon 7; numbering as per NM001178010.2) remained as the predominant transcript, the variant allele induced the use of novel splice acceptor sites in intron 6, all of which produced transcripts harbouring premature stop codons. This perturbation of canonical splicing provides evidence that this synonymous variant is indeed a deleterious alteration in this family. This report adds to the initial patient cohort in which several synonymous variants were also described, further highlighting the contribution of this variant type in CDC45. It also reiterates the true potential pathogenicity of synonymous variants, which is a mutation type that is commonly ignored in variant prioritization strategies.
Collapse
Affiliation(s)
- Karen M Knapp
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Bridget Fellows
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India; Department of Medical Genetics, Kasturba Medical College, Manipal, Karnataka, India
| | - Louise S Bicknell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|