1
|
Liljeqvist JÅ, Önnheim K, Tunbäck P, Eriksson K, Görander S, Bäckström M, Bergström T. Human Antibodies against Herpes Simplex Virus 2 Glycoprotein G Do Not Neutralize but Mediate Antibody-Dependent Cellular Cytotoxicity. Antibodies (Basel) 2024; 13:40. [PMID: 38804308 PMCID: PMC11130973 DOI: 10.3390/antib13020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/27/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a sexually transmitted infection affecting 491 million individuals globally. Consequently, there is a great need for both prophylactic and therapeutic vaccines. Unfortunately, several vaccine clinical trials, primarily employing the glycoprotein D of HSV-2 (gD-2), have failed. The immune protection conferred by human anti-HSV-2 antibodies in genital infection and disease remains elusive. It is well-known that gD-2 elicits cross-reactive neutralizing antibodies, i.e., anti-gD-2 antibodies recognize gD in HSV-1 (gD-1). In contrast, anti-glycoprotein G in HSV-2 (mgG-2) antibodies are exclusively type-specific for HSV-2. In this study, truncated versions of gD-2 and mgG-2 were recombinantly produced in mammalian cells and used for the purification of anti-gD-2 and anti-mgG-2 antibodies from the serum of five HSV-2-infected subjects, creating a pool of purified antibodies. These antibody pools were utilized as standards together with purified mgG-2 and gD-2 antigens in ELISA to quantitatively estimate and compare the levels of cross-reactive anti-gD-1 and anti-gD-2 antibodies, as well as anti-mgG-2 antibodies in sera from HSV-1+2-, HSV-2-, and HSV-1-infected subjects. The median concentration of anti-mgG-2 antibodies was five times lower in HSV-1+2-infected subjects as compared with cross-reactive anti-gD-1 and anti-gD-2 antibodies, and three times lower in HSV-2 infected subjects as compared with anti-gD-2 antibodies. The pool of purified anti-gD-2 antibodies presented neutralization activity at low concentrations, while the pool of purified anti-mgG-2 antibodies did not. Instead, these anti-mgG-2 antibodies mediated antibody-dependent cellular cytotoxicity (ADCC) by human granulocytes, monocytes, and NK-cells, but displayed no complement-dependent cytotoxicity. These findings indicate that antibodies to mgG-2 in HSV-2-infected subjects are present at low concentrations but mediate the killing of infected cells via ADCC rather than by neutralizing free viral particles. We, and others, speculate that Fc-receptor mediated antibody functions such as ADCC following HSV-2 vaccination may serve as a better marker of protection correlate instead of neutralizing activity. In an mgG-2 therapeutic vaccine, our findings of low levels of anti-mgG-2 antibodies in HSV-2-infected subjects may suggest an opportunity to enhance the immune responses against mgG-2. In a prophylactic HSV-2 mgG-2 vaccine, a possible interference in cross-reactive immune responses in already infected HSV-1 subjects can be circumvented.
Collapse
Affiliation(s)
- Jan-Åke Liljeqvist
- Department of Infectious Diseases, Institute of Biomedicine, 413 90 Gothenburg, Sweden; (K.Ö.); (S.G.); (T.B.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | - Karin Önnheim
- Department of Infectious Diseases, Institute of Biomedicine, 413 90 Gothenburg, Sweden; (K.Ö.); (S.G.); (T.B.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | - Petra Tunbäck
- Department of Dermatology and Venereology, Institute of Clinical Sciences, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden;
| | - Staffan Görander
- Department of Infectious Diseases, Institute of Biomedicine, 413 90 Gothenburg, Sweden; (K.Ö.); (S.G.); (T.B.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | - Malin Bäckström
- Mammalian Protein Expression Core Facility, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden;
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, 413 90 Gothenburg, Sweden; (K.Ö.); (S.G.); (T.B.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| |
Collapse
|
2
|
Mellors J, Carroll M. Direct enhancement of viral neutralising antibody potency by the complement system: a largely forgotten phenomenon. Cell Mol Life Sci 2024; 81:22. [PMID: 38200235 PMCID: PMC10781860 DOI: 10.1007/s00018-023-05074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Neutralisation assays are commonly used to assess vaccine-induced and naturally acquired immune responses; identify correlates of protection; and inform important decisions on the screening, development, and use of therapeutic antibodies. Neutralisation assays are useful tools that provide the gold standard for measuring the potency of neutralising antibodies, but they are not without limitations. Common methods such as the heat-inactivation of plasma samples prior to neutralisation assays, or the use of anticoagulants such as EDTA for blood collection, can inactivate the complement system. Even in non-heat-inactivated samples, the levels of complement activity can vary between samples. This can significantly impact the conclusions regarding neutralising antibody potency. Restoration of the complement system in these samples can be achieved using an exogenous source of plasma with preserved complement activity or with purified complement proteins. This can significantly enhance the neutralisation titres for some antibodies depending on characteristics such as antibody isotype and the epitope they bind, enable neutralisation with otherwise non-neutralising antibodies, and demonstrate a better relationship between in vitro and in vivo findings. In this review, we discuss the evidence for complement-mediated enhancement of antibody neutralisation against a range of viruses, explore the potential mechanisms which underpin this enhancement, highlight current gaps in the literature, and provide a brief summary of considerations for adopting this approach in future research applications.
Collapse
Affiliation(s)
- Jack Mellors
- Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Miles Carroll
- Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Nautiyal S, Nandi S, Sharma K, Gairola V, Sai Balaji KG, Biswas SK, Agrawal R, Mahajan S, Singh KP, Sharma GK. Development and evaluation of recombinant gD protein based ELISA for sero-surveillance of BoHV-1 in India. Biologicals 2023; 84:101720. [PMID: 37944302 DOI: 10.1016/j.biologicals.2023.101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Bovine herpes virus-1 (BoHV-1) is responsible for production losses through decreased milk yields, abortions, infertility, and trade restrictions in the bovine population. The disease is endemic in many countries including India. As the virus harbors a unique feature of latency animals once infected with the virus remain sero-positive for lifetime and can re-excrete the virus when exposed to stressful conditions. Hence, identification and culling of infected animals is only the means to minimize infection-associated losses. In this study, an economical indigenous assay for the detection of BoHV-1 specific antibodies was developed to cater to the huge bovine population of the country. The viral structural gD protein, expressed in the prokaryotic system was used for optimization of an indirect ELISA for bovines followed by statistical validation of the assay. The diagnostic sensitivity and specificity of the indirect ELISA were 82.9% and 91.3% respectively. Systematically collected serum samples representing organized, unorganized and breeding farms of India were tested with the indigenously developed assay for further validation.
Collapse
Affiliation(s)
- Sushmita Nautiyal
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India
| | - Sukdeb Nandi
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India
| | - Kirtika Sharma
- Center for Wildlife, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Vivek Gairola
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India
| | - K G Sai Balaji
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India
| | - Sanchay Kumar Biswas
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India
| | - Ravikant Agrawal
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Sonalika Mahajan
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, U.P., 243122, India
| | - Karam Pal Singh
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India
| | - Gaurav Kumar Sharma
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India.
| |
Collapse
|
4
|
Belshe RB, Blevins TP, Yu Y, Nethington AE, Bellamy A, Bryant C, Morrison LA. Neutralizing Antibody Kinetics and Immune Protection Against Herpes Simplex Virus 1 Genital Disease in Vaccinated Women. J Infect Dis 2022; 227:522-527. [PMID: 35199165 PMCID: PMC9927075 DOI: 10.1093/infdis/jiac067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Previously, our group conducted the Herpevac Trial for Women, a randomized efficacy field trial of type 2 glycoprotein D (gD2) herpes simplex virus (HSV) vaccine adjuvanted with ASO4 in 8323 women. Study participants were selected to be seronegative for HSV-1 and HSV-2. We found that the vaccine was 82% protective against culture-positive HSV-1 genital disease but offered no significant protection against HSV-2 genital disease. Efficacy against HSV-1 was associated with higher levels of antibody to gD2 at enzyme-linked immunosorbent assay (ELISA). METHODS To better understand the results of the efficacy study, we measured postvaccination concentrations of neutralizing antibody (nAb) to either HSV-1 and HSV-2 from HSV-infected study participants and matched uninfected controls. Statistical modeling was used to determine whether these responses were correlated with protection against HSV. RESULTS nAbs to either HSV-1 or HSV-2 were correlated with ELISA binding antibodies to gD2. HSV-1 or HSV-2 nAb findings support the observation of protection by higher levels of antibody against HSV-1 infection, but the lack of protection against HSV-2 remains unexplained. CONCLUSIONS The protection against HSV-1 infection observed in the Herpevac Trial for Women was associated with nAbs directed against the virus, although the power to assess this was lower in the nAb study compared with the ELISA results owing to smaller sample size. CLINICAL TRIALS REGISTRATION NCT00057330.
Collapse
Affiliation(s)
- Robert B Belshe
- Correspondence: Robert B. Belshe, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, 1100 S Grand Blvd, DRC-8, St Louis, MO 63104 ()
| | - Tamara P Blevins
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Yinyi Yu
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Amanda E Nethington
- Department of Internal Medicine, Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | | | | | | |
Collapse
|
5
|
Horton MS, Minnier M, Cosmi S, Cox K, Galli J, Peters J, Sullivan N, Squadroni B, Tang A, Fridman A, Wang D, Chen Z, Vora KA. Development of a microneutralization assay for HSV-2. J Virol Methods 2021; 297:114268. [PMID: 34437874 DOI: 10.1016/j.jviromet.2021.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Plaque Reduction Neutralization Test (PRNT) is the standard assay used for measuring neutralizing antibody responses to Herpes simplex virus type-2 (HSV-2). The PRNT is a cumbersome, time-consuming and laborious assay. The development of a faster, high throughput microneutralization assay (MNA) for HSV-2 viruses carried out in a 96-well format will allow for rapid testing of large numbers of samples for drug and vaccine development. METHODS We describe the generation of a MNA that utilizes a pair of anti-HSV human monoclonal antibodies (mAbs) for virus detection in HSV-2 infected Vero cells. Antibodies were generated by B-cell cloning from PBMC's isolated from HSV-1 negative/HSV-2 positive donors. We describe the selection and characterization of the antibodies used for virus detection by ELISA with purified, recombinant anti-HSV glycoproteins, antibody binding in infected cells, and Western Blot. We determine the anti-HSV-2 neutralizing titers of immune sera from mice by MNA and PRNT and compare these results by linear regression analysis. RESULTS We show that neutralization titers for HSV-2, determined by the 96-well MNA correlate with titers determined by a PRNT completed in 24-well plates in both the absence (R2 = 0.8250) and presence (R2 = 0.7075) of complement. CONCLUSIONS We have successfully developed an MNA that can be used in place of the burdensome PRNT to determine anti-HSV-2 neutralizing activity in serum. This MNA has much greater throughput than the PRNT, allowing many more samples to be processed in a shorter time saving ∼90 % of the time required by the laboratory scientist to complete the task as compared to the traditional PRNT.
Collapse
Affiliation(s)
- Melanie S Horton
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA.
| | | | - Scott Cosmi
- Eurofins Lancaster Laboratories Professional Scientific Service, Lancaster, PA, USA
| | - Kara Cox
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Jennifer Galli
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Jessica Peters
- Eurofins Lancaster Laboratories Professional Scientific Service, Lancaster, PA, USA
| | - Nicole Sullivan
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Brian Squadroni
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Aimin Tang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Arthur Fridman
- Scientific Informatics, Merck & Co., Inc., Rahway, NJ, USA
| | - Dai Wang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Zhifeng Chen
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Kalpit A Vora
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| |
Collapse
|