1
|
Groenewald A, Burns KE, Tingle MD, Ward ML, Power AS. Acute exposure to clozapine and sodium valproate impairs oxidative phosphorylation in human cardiac mitochondria. Toxicol Rep 2025; 14:101990. [PMID: 40151211 PMCID: PMC11946755 DOI: 10.1016/j.toxrep.2025.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
The only antipsychotic that is approved and recommended for the treatment of otherwise treatment-resistant schizophrenia is clozapine (CLZ). Unfortunately, CLZ can cause serious cardiotoxicities such as myocarditis and cardiomyopathy. The co-administration of sodium valproate (VPA) during initiation is a well-established risk factor for the development of CLZ-induced myocarditis. However, the mechanisms behind these cardiac adverse effects and the role of VPA co-administration are not understood. Preliminary evidence for the development of cardiac mitochondrial dysfunction has previously been reported in both rodent models and immortalised cell lines. This investigation aimed to determine the functional effects of CLZ and VPA on human cardiac mitochondria to improve the current understanding of how cardiotoxicity develops. Small samples of human atrial tissue from consenting patients undergoing a coronary artery bypass grafting procedure were freshly collected and utilised to investigate the acute effects of each drug on mitochondrial O2 consumption using high-resolution respirometry. Both drugs significantly decreased mitochondrial O2 consumption by a magnitude of 32 % following CLZ exposure, 25 % following VPA exposure, and 25 % following combined CLZ+VPA exposure during complex I- and II-linked oxidative phosphorylation. These results demonstrate acute bioenergetic dysfunction with exposure to both drugs, alone and in combination. We propose that cardiac mitochondria become a key focus in future research seeking to improve the risk-predictive, diagnostic, and treatment guidelines surrounding CLZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Amanda Groenewald
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathryn E. Burns
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Malcolm D. Tingle
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Amelia S. Power
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Belenichev I, Goncharov O, Bukhtiyarova N, Kuchkovskyi O, Ryzhenko V, Makyeyeva L, Oksenych V, Kamyshnyi O. Beta-Blockers of Different Generations: Features of Influence on the Disturbances of Myocardial Energy Metabolism in Doxorubicin-Induced Chronic Heart Failure in Rats. Biomedicines 2024; 12:1957. [PMID: 39335471 PMCID: PMC11428500 DOI: 10.3390/biomedicines12091957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Beta-blockers are first-line drugs in the treatment of chronic heart failure (CHF). However, there is no consensus on the specific effects of the beta-blockers of the I-III generation on energy metabolism in CHF. The aim of this study is to conduct a study of beta-blockers of different generations on myocardial energy metabolism in experimental CHF. CHF was modeled in white outbred rats by administering doxorubicin. The study drugs were administered intragastrically-new drug Hypertril (1-(β-phenylethyl)-4-amino-1,2,4-triazolium bromide)-3.5 mg/kg, Metoprolol-15 mg/kg, Nebivolol -10 mg/kg, Carvedilol 50 mg/kg, and Bisoprolol, 10 mg/kg. In the myocardium, the main indices of energy metabolism were determined-ATP, ADP, AMP, malate, lactate, pyruvate, succinate dehydrogenase (SDH) activity, and NAD-dependent malate dehydrogenase (NAD-MDH) activity. Traditional second-generation beta-blockers (Metoprolol and Bisoprolol) did not affect the studied indices of energy metabolism, and third-generation beta-blockers with additional properties-Carvedilol and, especially, Nebivalol and Hypertril-improved myocardial energy metabolism. The obtained results will help to expand our understanding of the effect of beta-blockers of various generations used to treat cardiovascular diseases on energy metabolism, and are also an experimental justification for the practical choice of these drugs in the complex therapy of CHF.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Olexiy Goncharov
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Oleh Kuchkovskyi
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Lyudmyla Makyeyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
3
|
Krstic AM, Jones TLM, Power AS, Ward ML. The Monocrotaline Rat Model of Right Heart Disease Induced by Pulmonary Artery Hypertension. Biomedicines 2024; 12:1944. [PMID: 39335458 PMCID: PMC11428269 DOI: 10.3390/biomedicines12091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Pulmonary artery hypertension (PAH) is characterised by increased pulmonary vascular resistance (PVR) resulting in elevated pressure in the pulmonary artery supplying the pulmonary circulation. Disease of the right ventricle (RV) often manifests as a result of PAH placing excessive pressure on the right side of the heart. Although a relatively rare disease in humans, the impact of sustained PAH is severe, with poor outcomes even in treated individuals. As PAH develops, the blood flow is restricted through the pulmonary arteries and the right ventricle hypertrophies due to the increased strain of pumping blood through the pulmonary circulation. With time, RV hypertrophy progresses to right heart failure, impacting the supply of blood to the left ventricle and systemic circulation. Although right heart failure can currently be treated, it cannot be cured. There is therefore a need for more research into the physiological changes that cause the heart to fail under pressure overload. This review aims to evaluate the monocrotaline (MCT) rat model of PAH as a means of studying the cellular mechanisms associated with the development of RV hypertrophy and right heart failure.
Collapse
Affiliation(s)
- Anna Maria Krstic
- Department of Physiology, University of Auckland, Auckland 1142, New Zealand
| | - Timothy L M Jones
- Department of Physiology, University of Auckland, Auckland 1142, New Zealand
- Division of Cardiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Amelia S Power
- Department of Physiology, University of Auckland, Auckland 1142, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Gul R, Okla M, Mahmood A, Nawaz S, Fallata A, Bazighifan A, Alfayez M, Alfadda AA. Comparison of the Protective Effects of Nebivolol and Metoprolol against LPS-Induced Injury in H9c2 Cardiomyoblasts. Curr Issues Mol Biol 2023; 45:9316-9327. [PMID: 37998760 PMCID: PMC10670410 DOI: 10.3390/cimb45110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Here, we, for the first time, compared the cardioprotective effects of third-generation vasodilating beta-blocker nebivolol (Neb) and conventional beta-blocker metoprolol (Met) on LPS-induced injury in H9c2 cardiomyoblasts. Our findings denoted that Neb and Met pretreatment diminish LPS-mediated cytotoxicity and oxidative stress. Concomitantly, LPS-triggered inflammatory cytokines activation was significantly suppressed by Neb but not by Met. Pretreatment with either Neb or Met alleviated LPS-mediated mitochondrial impairment by enhancing the expression of genes related to its biogenesis such as PGC-1α, NRF1, and TFAM. On the contrary, Neb but not Met-upregulated mitochondrial fusion-related genes such as OPA, and MFN2. In summary, our findings suggest that Neb and Met treatment significantly ameliorated the LPS-induced cytotoxicity and oxidative stress. Additionally, these findings suggest that Neb but not Met significantly down-regulates LPS-induced proinflammatory factors, probably by enhancing mitochondrial biogenesis and fusion.
Collapse
Affiliation(s)
- Rukhsana Gul
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Shahid Nawaz
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
| | - Amina Fallata
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
| | - Arwa Bazighifan
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia; (S.N.); (A.B.); (A.A.A.)
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
5
|
Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A. Mitochondrial Integrity Is Critical in Right Heart Failure Development. Int J Mol Sci 2023; 24:11108. [PMID: 37446287 PMCID: PMC10342493 DOI: 10.3390/ijms241311108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular processes underlying right ventricular (RV) dysfunction (RVD) and right heart failure (RHF) need to be understood to develop tailored therapies for the abatement of mortality of a growing patient population. Today, the armament to combat RHF is poor, despite the advancing identification of pathomechanistic processes. Mitochondrial dysfunction implying diminished energy yield, the enhanced release of reactive oxygen species, and inefficient substrate metabolism emerges as a potentially significant cardiomyocyte subcellular protagonist in RHF development. Dependent on the course of the disease, mitochondrial biogenesis, substrate utilization, redox balance, and oxidative phosphorylation are affected. The objective of this review is to comprehensively analyze the current knowledge on mitochondrial dysregulation in preclinical and clinical RVD and RHF and to decipher the relationship between mitochondrial processes and the functional aspects of the right ventricle (RV).
Collapse
Affiliation(s)
- Marion Müller
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Elfi Donhauser
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Tibor Maske
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Cornelius Bischof
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Daniel Dumitrescu
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Volker Rudolph
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Anna Klinke
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
6
|
Increased Mitochondrial Calcium Fluxes in Hypertrophic Right Ventricular Cardiomyocytes from a Rat Model of Pulmonary Artery Hypertension. Life (Basel) 2023; 13:life13020540. [PMID: 36836897 PMCID: PMC9967871 DOI: 10.3390/life13020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Pulmonary artery hypertension causes right ventricular hypertrophy which rapidly progresses to heart failure with underlying cardiac mitochondrial dysfunction. Prior to failure, there are alterations in cytosolic Ca2+ handling that might impact mitochondrial function in the compensatory phase of RV hypertrophy. Our aims, therefore, were (i) to measure beat-to-beat mitochondrial Ca2+ fluxes, and (ii) to determine mitochondrial abundance and function in non-failing, hypertrophic cardiomyocytes. Male Wistar rats were injected with either saline (CON) or monocrotaline (MCT) to induce pulmonary artery hypertension and RV hypertrophy after four weeks. Cytosolic Ca2+ ([Ca2+]cyto) transients were obtained in isolated right ventricular (RV) cardiomyocytes, and mitochondrial Ca2+ ([Ca2+]mito) was recorded in separate RV cardiomyocytes. The distribution and abundance of key proteins was determined using confocal and stimulated emission depletion (STED) microscopy. The RV mitochondrial function was also assessed in RV homogenates using oxygraphy. The MCT cardiomyocytes had increased area, larger [Ca2+]cyto transients, increased Ca2+ store content, and faster trans-sarcolemmal Ca2+ extrusion relative to CON. The MCT cardiomyocytes also had larger [Ca2+]mito transients. STED images detected increased mitochondrial protein abundance (TOM20 clusters per μm2) in MCT, yet no difference was found when comparing mitochondrial respiration and membrane potential between the groups. We suggest that the larger [Ca2+]mito transients compensate to match ATP supply to the increased energy demands of hypertrophic cardiomyocytes.
Collapse
|
7
|
Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed. Int J Mol Sci 2022; 23:13653. [PMID: 36362438 PMCID: PMC9656474 DOI: 10.3390/ijms232113653] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.
Collapse
Affiliation(s)
- Alina M. Bețiu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lavinia Noveanu
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ana Lascu
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
- Department of Internal Medicine 1, University Clinic Würzburg, 97078 Würzburg, Germany
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Danina M. Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
8
|
Increased Mitochondrial Calcium Fluxes Compensate for the Elevated Energetic Demand of Hypertrophic Cardiomyocytes Prior to Failure. Heart Lung Circ 2022. [DOI: 10.1016/j.hlc.2022.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Park JF, Clark VR, Banerjee S, Hong J, Razee A, Williams T, Fishbein G, Saddic L, Umar S. Transcriptomic Analysis of Right Ventricular Remodeling in Two Rat Models of Pulmonary Hypertension: Identification and Validation of Epithelial-to-Mesenchymal Transition in Human Right Ventricular Failure. Circ Heart Fail 2021; 14:e007058. [PMID: 33541093 DOI: 10.1161/circheartfailure.120.007058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Right ventricular (RV) dysfunction is a significant prognostic determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). Despite the importance of RV function in PAH, the underlying molecular mechanisms of RV dysfunction secondary to PAH remain unclear. We aim to identify and compare molecular determinants of RV failure using RNA sequencing of RV tissue from 2 clinically relevant animal models of PAH. METHODS We performed RNA sequencing on RV from rats treated with monocrotaline or Sugen with hypoxia/normoxia. PAH and RV failure were confirmed by catheterization and echocardiography. We validated the RV transcriptome results using quantitative real-time polymerase chain reaction, immunofluorescence, and Western blot. Immunohistochemistry and immunofluorescence were performed on human RV tissue from control (n=3) and PAH-induced RV failure patients (n=5). RESULTS We identified similar transcriptomic profiles of RV from monocrotaline- and Sugen with hypoxia-induced RV failure. Pathway analysis showed genes enriched in epithelial-to-mesenchymal transition, inflammation, and metabolism. Histological staining of human RV tissue from patients with RV failure secondary to PAH revealed significant RV fibrosis and endothelial-to-mesenchymal transition, as well as elevated cellular communication network factor 2 (top gene implicated in epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition) expression in perivascular areas compared with normal RV. CONCLUSIONS Transcriptomic signature of RV failure in monocrotaline and Sugen with hypoxia models showed similar gene expressions and biological pathways. We provide translational relevance of this transcriptomic signature using RV from patients with PAH to demonstrate evidence of epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition and protein expression of cellular communication network factor 2 (CTGF [connective tissue growth factor]). Targeting specific molecular mechanisms responsible for RV failure in monocrotaline and Sugen with hypoxia models may identify novel therapeutic strategies for PAH-associated RV failure.
Collapse
Affiliation(s)
- John F Park
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Varina R Clark
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Somanshu Banerjee
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Jason Hong
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
- Division of Pulmonary Critical Care Medicine, Department of Medicine, UCLA, Los Angeles, CA (J.H.)
| | - Asif Razee
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Tiffany Williams
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Gregory Fishbein
- Department of Pathology (G.F.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Lou Saddic
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
10
|
Tan S, Zhou F, Zhang Z, Wang J, Xu J, Zhuang Q, Meng Q, Xi Q, Jiang Y, Wu G. Beta-1 blocker reduces inflammation and preserves intestinal barrier function after open abdominal surgery. Surgery 2020; 169:885-893. [PMID: 33303271 DOI: 10.1016/j.surg.2020.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Open abdominal surgery is frequently related to excessive inflammation and a compromised intestinal barrier, leading to poor clinical outcomes. The administration of beta-1 blocker has been shown to effectively reduce inflammation and preserve intestinal barrier function in patients with sepsis, shock, or other critical illnesses. The underlying mechanism of these effects may be associated with the autonomic nervous system's activation via cholecystokinin receptors. This study aimed to investigate the effect of beta-1 blocker on systemic and local inflammatory responses and the intestinal barrier function in the context of open abdominal surgery. METHODS A rat model of open abdominal surgery was induced through peritoneal air exposure for 3 hours and treated via gavage with the beta-1 blocker, metoprolol, or saline. Cholecystokinin-receptor antagonists were administered before the metoprolol treatment. Peritoneal lavage fluid, serum, and tissues were collected 24 hours after surgery to determine systemic and local inflammation and intestinal integrity. RESULTS The intervention with metoprolol significantly reduced serum tumor necrosis factor-alpha and interleukin-6 (P < .05) and peritoneal interleukin-6 (P < .01) compared with those of animals treated with saline. The intestinal myeloperoxidase indicating the influx of neutrophils was also significantly prevented by the administration of metoprolol (P < .05). Above all, this intervention resulted in a significant decrease in serum D-lactate and intestinal fatty acid-binding protein, intestinal permeability, bacterial translocation, and Chiu's score for intestinal mucosa injury (P < .05). However, the anti-inflammatory and intestinal integrity protective effects of metoprolol were prevented by the blockage of cholecystokinin receptors (P < .05). CONCLUSION Our data indicate that beta-1 blocker reduces systemic and local inflammatory responses and preserves intestinal barrier function after open abdominal surgery through a mechanism that depends on cholecystokinin receptors. Clinically, these findings imply that perioperative intervention with a beta-1 blocker may be an effective new therapy to enhance recovery after open abdominal surgery.
Collapse
Affiliation(s)
- Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Feng Zhou
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Germany
| | - Zhige Zhang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Junjie Wang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Jiahao Xu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Qiulin Zhuang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Qingyang Meng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Qiulei Xi
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Yi Jiang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
11
|
Epigenetic Regulation of Pulmonary Arterial Hypertension-Induced Vascular and Right Ventricular Remodeling: New Opportunities? Int J Mol Sci 2020; 21:ijms21238901. [PMID: 33255338 PMCID: PMC7727715 DOI: 10.3390/ijms21238901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a rare chronic disease with high impact on patients’ quality of life and currently no available cure. PAH is characterized by constant remodeling of the pulmonary artery by increased proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), fibroblasts (FBs) and endothelial cells (ECs). This remodeling eventually leads to increased pressure in the right ventricle (RV) and subsequent right ventricle hypertrophy (RVH) which, when left untreated, progresses into right ventricle failure (RVF). PAH can not only originate from heritable mutations, but also develop as a consequence of congenital heart disease, exposure to drugs or toxins, HIV, connective tissue disease or be idiopathic. While much attention was drawn into investigating and developing therapies related to the most well understood signaling pathways in PAH, in the last decade, a shift towards understanding the epigenetic mechanisms driving the disease occurred. In this review, we reflect on the different epigenetic regulatory factors that are associated with the pathology of RV remodeling, and on their relevance towards a better understanding of the disease and subsequently, the development of new and more efficient therapeutic strategies.
Collapse
|
12
|
Piquereau J, Veksler V, Novotova M, Ventura-Clapier R. Energetic Interactions Between Subcellular Organelles in Striated Muscles. Front Cell Dev Biol 2020; 8:581045. [PMID: 33134298 PMCID: PMC7561670 DOI: 10.3389/fcell.2020.581045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Adult striated muscle cells present highly organized structure with densely packed intracellular organelles and a very sparse cytosol accounting for only few percent of cell volume. These cells have a high and fluctuating energy demand that, in continuously working oxidative muscles, is fulfilled mainly by oxidative metabolism. ATP produced by mitochondria should be directed to the main energy consumers, ATPases of the excitation-contraction system; at the same time, ADP near ATPases should rapidly be eliminated. This is achieved by phosphotransfer kinases, the most important being creatine kinase (CK). Specific CK isoenzymes are located in mitochondria and in close proximity to ATPases, forming efficient energy shuttle between these structures. In addition to phosphotransfer kinases, ATP/ADP can be directly channeled between mitochondria co-localized with ATPases in a process called “direct adenine nucleotide channeling, DANC.” This process is highly plastic so that inactivation of the CK system increases the participation of DANC to energy supply owing to the rearrangement of cell structure. The machinery for DANC is built during postnatal development in parallel with the increase in mitochondrial mass, organization, and complexification of the cell structure. Disorganization of cell architecture remodels the mitochondrial network and decreases the efficacy of DANC, showing that this process is intimately linked to cardiomyocyte structure. Accordingly, in heart failure, disorganization of the cell structure along with decrease in mitochondrial mass reduces the efficacy of DANC and together with alteration of the CK shuttle participates in energetic deficiency contributing to contractile failure.
Collapse
Affiliation(s)
- Jérôme Piquereau
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Vladimir Veksler
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Marta Novotova
- Department of Cellular Cardiology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | |
Collapse
|
13
|
Boengler K, Schlüter KD, Schermuly RT, Schulz R. Cardioprotection in right heart failure. Br J Pharmacol 2020; 177:5413-5431. [PMID: 31995639 PMCID: PMC7680005 DOI: 10.1111/bph.14992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Ischaemic and pharmacological conditioning of the left ventricle is mediated by the activation of signalling cascades, which finally converge at the mitochondria and reduce ischaemia/reperfusion (I/R) injury. Whereas the molecular mechanisms of conditioning in the left ventricle are well characterized, cardioprotection of the right ventricle is principally feasible but less established. Similar to what is known for the left ventricle, a dysregulation in signalling pathways seems to play a role in I/R injury of the healthy and failing right ventricle and in the ability/inability of the right ventricle to respond to a conditioning stimulus. The maintenance of mitochondrial function seems to be crucial in both ventricles to reduce I/R injury. As far as currently known, similar molecular mechanisms mediate ischaemic and pharmacological preconditioning in the left and right ventricles. However, the two ventricles seem to respond differently towards exercise‐induced preconditioning. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | | | | | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
14
|
Stølen T, Shi M, Wohlwend M, Høydal MA, Bathen TF, Ellingsen Ø, Esmaeili M. Effect of exercise training on cardiac metabolism in rats with heart failure. SCAND CARDIOVASC J 2019; 54:84-91. [PMID: 31500456 DOI: 10.1080/14017431.2019.1658893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objectives. Heart failure (HF) impairs resting myocardial energetics, myocardial mitochondrial performance, and maximal oxygen uptake (VO2max). Exercise training is included in most rehabilitation programs and benefits HF patients. However, the effect of exercise intensity on cardiac mitochondrial respiration and concentrations of the key bioenergetic metabolites phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi) is unclear. This study aimed to investigate the effects of exercise training at different intensities in rats with HF. Methods. Rats underwent myocardial infarction or sham operations and were divided into three subgroups: sedentary, moderate intensity, or high intensity. The impact of HF and 6 weeks of exercise training on energy metabolism was evaluated by 31P magnetic resonance spectroscopy and mitochondrial respirometry. The concentrations of PCr, ATP, and Pi were quantified by magnetic resonance spectroscopy. VO2max was measured by treadmill respirometry. Results. Exercise training increased VO2max in sham and HF. PCr/ATP ratio was reduced in HF (p < .01) and remained unchanged by exercise training. PCr concentration was significantly lower in HF compared to sham (p < .01). Moderate and high-intensity exercise training increased ATP in HF and sham. HF impaired complex I (CI) and complex II (p = .034) respiration. High-intensity exercise training recovered CI respiration in HF rats compared to HF sedentary (p = .014). Conclusions. Exercise training improved cardiac performance, as indicated by increased VO2max and higher exercise capacity, without changing the myocardial PCr/ATP ratio. These observations suggest that the PCr/ATP biomarker is not suited to evaluate the beneficial effects of exercise training in the heart. The exact mechanisms require further investigations, as exercise training did increase ATP levels and CI respiration.
Collapse
Affiliation(s)
- Tomas Stølen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway.,Clinic of Cardiothoracic Surgery, St Olavs Hospital, Trondheim, Norway
| | - Mingshu Shi
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Wohlwend
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiothoracic Surgery, St Olavs Hospital, Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Ellingsen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway
| | - Morteza Esmaeili
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|