1
|
Li N, Shen B, Cao W, Chen R, He R, Qian L, Xu L, Liu Y. a1-antitrypsin, a new biomarker of polycystic ovary syndrome by changing its expression and rhythm. J Ovarian Res 2025; 18:109. [PMID: 40420300 DOI: 10.1186/s13048-025-01698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 05/17/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Previous proteomic studies have demonstrated the potential for identifying specific diagnostic biomarkers in the plasma and follicular fluid of patients with polycystic ovary syndrome (PCOS), which was utilized to elucidate the underlying etiology of PCOS. Our study aimed to identify differences in serum protein expression between newly diagnosed PCOS patients and healthy controls and to identify novel biomarkers for the diagnosis and treatment of women with PCOS. We focused on the association between a1-antitrypsin (A1AT) levels and hormonal-metabolic parameters in women with PCOS. MATERIALS AND METHODS This study involved 70 newly diagnosed PCOS patients and 78 healthy controls. We measured serum A1AT levels via Label-free quantitative proteomics and ELISA methods. Additionally, blood samples from 10 PCOS patients and 10 healthy controls were collected over 24 h. Furthermore, we established a mouse model of PCOS to detect serum A1AT levels and the A1AT mRNA expressions of liver tissues. We also analyzed the mRNA expressions of several clock-related genes in the hypothalamus, pituitary, ovary and liver tissues. RESULTS Serum A1AT levels were higher in women with newly diagnosed PCOS than controls. Meanwhile, the levels of serum IL-6 and TNF-a in PCOS patients were higher than those of healthy controls. A1AT levels showed a positive correlation with luteinizing hormone (LH) and testosterone levels, whereas it showed a negative correlation with sex hormone-binding protein in women with PCOS. However, some metabolic markers were not significantly associated with the level of A1AT. Interestingly, serum A1AT level exhibited a significant diurnal rhythm in the control group expectedly, while it was not diurnal in the PCOS group. Animal studies suggest that the increase in A1AT levels observed in PCOS could be associated with alterations in the expression of clock-related genes in reproductive tissues. CONCLUSIONS Increased A1AT levels in women with newly diagnosed PCOS were related to androgens, suggesting that A1AT might be a potential biomarker for PCOS. Serum A1AT levels exhibited a significant diurnal rhythm in the control group, while it was not diurnal in the PCOS group. These findings provide a theoretical foundation for understanding the role of the circadian clock in the prevention and treatment of PCOS in females with biorhythm disorders.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Beilei Shen
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Cao
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - RouRou Chen
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Rongbo He
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Li Qian
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Peserico A, Barboni B, Camerano Spelta Rapini C, Di Berardino C, Capacchietti G, Canciello A, Konstantinidou F, Donato M, Stuppia L, Gatta V. Transcriptomic Profile of Early Antral Follicles: Predictive Somatic Gene Markers of Oocyte Maturation Outcome. Cells 2025; 14:704. [PMID: 40422207 DOI: 10.3390/cells14100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Early antral follicles (EAfs) offer oocyte potential in Assisted Reproductive Technology (ART), but most fail to mature under current in vitro maturation (IVM) protocols. This study examines transcriptomic profiles of the follicular wall (FW) compartment during IVM in ovine EAfs using a 3D follicle-enclosed oocyte (FEO) culture to identify somatic gene markers predicting oocyte maturation success. Differentially expressed genes (DEGs) were identified across three comparisons: pre- vs. post-hCG in FW enclosing mature/fertilizable (1) or immature (2) oocytes, and post-hCG between FW supporting successful vs. failed maturation (3). Network analysis highlighted key modulated and HUB genes. Two DEG categories emerged: genes regulating meiosis resumption and genes defining follicular signatures linked to oocyte competence. Meiosis resumption involved ECM remodeling, hypoxia, and relaxin signaling activation, while proliferative and metabolic pathways were downregulated. MMP13 and EGFR regulated the ECM pathway, working for meiosis resumption, while TGFB1 predicted failure. Oocyte competence involves ECM activation and the suppression of stress and cell cycle pathways, with ITIH4 being conducive to central HUB tuning inflammation and angiogenesis-dependent maturation. This study reveals molecular mechanisms behind follicle maturation, identifying transcriptomic signatures for FW releasing mature/fertilizable and incompetent oocytes. It confirms known biomarkers and uncovers new regulators, offering tools to assess follicle quality, improve IVF-oocyte selection, and enhance fertility preservation.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Fani Konstantinidou
- Department of Neuroscience, Imaging and Clinical Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marisa Donato
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Neuroscience, Imaging and Clinical Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Neuroscience, Imaging and Clinical Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Naqvi I, Bandyopadhyay A, Panda A, Hareramadas B. Polycystic Ovarian Syndrome: A Review of Multi-omics Analyses. Reprod Sci 2025; 32:618-646. [PMID: 39875694 DOI: 10.1007/s43032-025-01789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Polycystic Ovary Syndrome (PCOS) is among the most prevalent endocrinological abnormalities of young females, posing a grave public health challenge to the society. The objective of the present literature review is to analyze the enormous amount of information available by way of numerous multi-omic studies, and to explore a meaningful relationship between various factors such as genetic, proteomic, environmental etc. to understand the multifactorial metabolic disorder in a proper manner. Detailed literature search was done in various science article repositories and biomedical databases such as PubMed, Google Scholar, BioMed Central, Embase etc. by using several keywords in whole gamut of combinations. PCOS is a heritable disease. It manifests as a result of a combination of several intricately inter-linked symptoms such as anovulation, obesity, type II diabetes, hyperandrogenism, polycystic ovaries etc., the last one being the main manifestation of the disease, thus leading to infertility among several other complications. Such a multifactorial metabolic disorder with extreme symptomatic heterogeneity cannot be fully explained solely based on symptoms or genetic variations; thus, giving some space of thought to other factors such as epigenetic, microbiomic factors etc. playing a role in the causation of the disease. The present scientific survey of literature extensively reviews various aspects of PCOS by critically looking into the vast multi-omic data, and concluded with suggesting treatment options as well as lifestyle changes required to deal with the psychological/ emotional impacts of the condition on affected women.
Collapse
Affiliation(s)
- Ilmas Naqvi
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India
| | | | - Amisha Panda
- Lab. No. 115, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - B Hareramadas
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India.
| |
Collapse
|
4
|
Ding N, Wang R, Wang P, Wang F. Metabolism-related proteins as biomarkers for predicting prognosis in polycystic ovary syndrome. Proteome Sci 2024; 22:14. [PMID: 39702179 DOI: 10.1186/s12953-024-00238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE The study aimed to explore the role of metabolism-related proteins and their correlation with clinical data in predicting the prognosis of polycystic ovary syndrome (PCOS). METHODS This research involves a secondary analysis of proteomic data derived from endometrial samples collected from our study group, which includes 33 PCOS patients and 7 control subjects. A comprehensive identification and analysis of 4425 proteins were conducted to screened differentially expressed proteins (DEPs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were subsequently performed on the DEPs. To identify independent prognostic metabolism-related proteins, univariate Cox regression and LASSO regression were applied. The expression levels of these proteins were then used to develop a prognostic model, with their predictive accuracy evaluated through receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and calibration curves. Furthermore, we also investigate the correlation between clinical data and prognostic proteins. RESULTS The study identified 285 DEPs between the PCOS and control groups. GO enrichment analysis revealed significant involvement in metabolic processes, while KEGG pathway analysis highlighted pathways such as glycolysis/gluconeogenesis and glucagon signaling. Ten key metabolism-related proteins (ACSL5, ANPEP, CYB5R3, ENOPH1, GLS, GLUD1, LDHB, PLCD1, PYCR2, and PYCR3) were identified as significant predictors of PCOS prognosis. Patients were separated into high and low-risk groups according to the risk score. The ROC curves for predicting outcomes at 6, 28, and 37 weeks demonstrated excellent predictive performance, with AUC values of 0.98, 1.0, and 1.0, respectively. The nomogram constructed from these proteins provided a reliable tool for predicting pregnancy outcomes. DCA indicated a net benefit of the model across various risk thresholds, and the calibration curve confirmed the model's accuracy. Additionally, we also found BMI exhibited a significant negative correlation with the expression of GLS (r =-0.44, p = 0.01) and CHO showed a significant positive correlation with the expression of LDHB (r = 0.35, p = 0.04). CONCLUSION The identified metabolism-related proteins provide valuable insights into the prognosis of PCOS. The protein based prognostic model offers a robust and reliable tool for risk stratification and personalized management of PCOS patients.
Collapse
Affiliation(s)
- Nan Ding
- The addresses of the institutions: Reproductive Medicine Center, Lanzhou University Second Hospital, No.82, Cuiying Road, Chengguan District, Lanzhou City, Gansu Province, China
| | - Ruifang Wang
- The addresses of the institutions: Reproductive Medicine Center, Lanzhou University Second Hospital, No.82, Cuiying Road, Chengguan District, Lanzhou City, Gansu Province, China
| | - Peili Wang
- The addresses of the institutions: Reproductive Medicine Center, Lanzhou University Second Hospital, No.82, Cuiying Road, Chengguan District, Lanzhou City, Gansu Province, China
| | - Fang Wang
- The addresses of the institutions: Reproductive Medicine Center, Lanzhou University Second Hospital, No.82, Cuiying Road, Chengguan District, Lanzhou City, Gansu Province, China.
| |
Collapse
|
5
|
Henríquez S, Valdivia MJ, Mainigi M, Villarroel C, Velasquez L, Strauss Iii JF, Devoto L. The role of estrogen metabolites in human ovarian function. Steroids 2024; 203:109368. [PMID: 38278282 DOI: 10.1016/j.steroids.2024.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Estrogens produced by the ovary play diverse roles in controlling physiological changes in the function of the female reproductive system. Although estradiol acts through classical nuclear receptors, its metabolites (EMs) act by alternative pathways. It has been postulated that EMs act through paracrine-autocrine pathways to regulate key processes involved in normal follicular growth, corpus luteum (CL) development, function, and regression. The present review describes recent advances in understanding the role of EMs in human ovarian physiology during the menstrual cycle, including their role in anovulatory disorders and their action in other target tissues.
Collapse
Affiliation(s)
- Soledad Henríquez
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile; Institute of Interdisciplinary Research in Biomedical Sciences (I3CBSEK), Faculty of Health Sciences, SEK University, Santiago, Chile.
| | - Maria Jose Valdivia
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Monica Mainigi
- Department of Obstetrics and Gynecology and Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Villarroel
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Velasquez
- Institute of Interdisciplinary Research in Biomedical Sciences (I3CBSEK), Faculty of Health Sciences, SEK University, Santiago, Chile
| | - Jerome F Strauss Iii
- Department of Obstetrics and Gynecology and Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luigi Devoto
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Dai M, Hong L, Yin T, Liu S. Disturbed Follicular Microenvironment in Polycystic Ovary Syndrome: Relationship to Oocyte Quality and Infertility. Endocrinology 2024; 165:bqae023. [PMID: 38375912 DOI: 10.1210/endocr/bqae023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with infertility and poor reproductive outcomes. The follicular fluid (FF) microenvironment plays a crucial role in oocyte development. This review summarizes evidence elucidating the alterations in FF composition in PCOS. Various studies demonstrated a pronounced proinflammatory milieu in PCOS FF, characterized by increased levels of cytokines, including but not limited to interleukin-6 (IL-6), tumor necrosis factor α, C-reactive protein, and IL-1β, concomitant with a reduction in anti-inflammatory IL-10. T lymphocytes and antigen-presenting cells are dysregulated in PCOS FF. PCOS FF exhibit heightened reactive oxygen species production and the accumulation of lipid peroxidation byproducts, and impaired antioxidant defenses. Multiple microRNAs are dysregulated in PCOS FF, disrupting signaling critical to granulosa cell function. Proteomic analysis reveals changes in pathways related to immune responses, metabolic perturbations, angiogenesis, and hormone regulation. Metabolomics identify disturbances in glucose metabolism, amino acids, lipid profiles, and steroid levels with PCOS FF. Collectively, these pathological alterations may adversely affect oocyte quality, embryo development, and fertility outcomes. Further research on larger cohorts is needed to validate these findings and to forge the development of prognostic biomarkers of oocyte developmental competence within FF. Characterizing the follicular environment in PCOS is key to elucidating the mechanisms underlying subfertility in this challenging disorder.
Collapse
Affiliation(s)
- Mengyang Dai
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| |
Collapse
|
7
|
Patil K, Naigaonkar A, Hinduja I, Mukherjee S. Transcriptomic profile of GLCs of PCOS women highlights metabolic dysregulation as a plausible contributor to PCOS pathophysiology. Reprod Biol 2023; 23:100787. [PMID: 37467532 DOI: 10.1016/j.repbio.2023.100787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex heterogeneous disorder with reproductive and metabolic consequences whose aetiology is still elusive. To understand the cellular mechanisms that potentially govern follicular defect in women with PCOS, we performed transcriptomic profiles of granulosa-lutein cells (GLCs) by RNA-Seq analysis. We found differential expression of 876 genes in GLCs between PCOS and controls that belonged to various processes such as cell cycle, extracellular matrix organization, angiogenesis, oxidative stress, metabolism, etc. that support folliculogenesis, oocyte development, and maturation. The cross-talk between oocyte and GLCs is a fundamental cornerstone in determining oocyte quality and highly interlinked pathways of metabolism and redox homeostasis may influence this. We found several genes involved in the metabolism of carbohydrates, nucleotides, cholesterol, and lipids were dysregulated, which may impair the supply of metabolites to the growing oocyte, affecting oocyte development and competence. Additionally, high metabolic activity during folliculogenesis may augment oxidative damage to cells and macromolecules if not counter-balanced. We observed dysregulation of redox homeostasis and AGE-RAGE signalling in the follicular environment. Among the validated genes, prokineticin-1 and growth differentiation factor-15 were found to be negatively regulated, while, S100, calcium-binding protein A9 and angiomotin-like-2 were positively regulated in GLCs of women with PCOS. Comparing our data with previously published relevant transcriptomic studies showed metabolic, cytokine-cytokine receptor interaction, IL-17, and chemokine signalling pathways were most commonly affected in PCOS. Overall, this data can provide insights into mechanisms contributing to PCOS pathophysiology and can be explored as potential indicators for oocyte/embryo quality in IVF settings.
Collapse
Affiliation(s)
- Krutika Patil
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai 400012, India
| | - Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai 400012, India
| | - Indira Hinduja
- P. D. Hinduja National Hospital and Medical Research Centre, Mahim, Mumbai 400016, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai 400012, India.
| |
Collapse
|
8
|
Kanaka V, Drakakis P, Loutradis D, Tsangaris GT. Proteomics in the study of female fertility: an update. Expert Rev Proteomics 2023; 20:319-330. [PMID: 37874610 DOI: 10.1080/14789450.2023.2275683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Female fertility has been a field of interest for the scientific community throughout the years. The contribution of proteomics in the study of female fertility as well as female infertility and in vitro fertilization (IVF) has been significant. Proteomics is a recently developed field, extensively applied to the identification and quantification of proteins, which could be used as potential biomarkers in a diagnostic, prognostic, or predictive manner in a variety of medical conditions. AREAS COVERED The present review focuses on proteomic studies of the oocyte and endometrial environment as well as on conditions related to infertility, such as polycystic ovarian syndrome, endometriosis, obesity, and unexplained infertility. Moreover, this review presents studies that have been done in an effort to search for fertility biomarkers in individuals following the IVF procedure. EXPERT OPINION The comprehension of the molecular pathways behind female fertility and infertility could contribute to the diagnosis, prognosis, and prediction of infertility. Moreover, the identification of proteomic biomarkers for IVF cycles could predict the possible outcome of an IVF cycle, prevent an unsuccessful IVF, and monitor the IVF cycle in a personalized manner, leading to increased success rates. [Figure: see text].
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
9
|
Babu A, Ramanathan G. Multi-omics insights and therapeutic implications in polycystic ovary syndrome: a review. Funct Integr Genomics 2023; 23:130. [PMID: 37079114 DOI: 10.1007/s10142-023-01053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological disease that causes adverse effects in women in their reproductive phase. Nonetheless, the molecular mechanisms remain unclear. Over the last decade, sequencing and omics approaches have advanced at an increased pace. Omics initiatives have come to the forefront of biomedical research by presenting the significance of biological functions and processes. Thus, multi-omics profiling has yielded important insights into understanding the biology of PCOS by identifying potential biomarkers and therapeutic targets. Multi-omics platforms provide high-throughput data to leverage the molecular mechanisms and pathways involving genetic alteration, epigenetic regulation, transcriptional regulation, protein interaction, and metabolic alterations in PCOS. The purpose of this review is to outline the prospects of multi-omics technologies in PCOS research by revealing novel biomarkers and therapeutic targets. Finally, we address the knowledge gaps and emerging treatment strategies for the management of PCOS. Future PCOS research in multi-omics at the single-cell level may enhance diagnostic and treatment options.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Proteomic Analysis of Human Follicular Fluid Reveals the Pharmacological Mechanisms of the Chinese Patent Drug Kunling Pill for Improving Diminished Ovarian Reserve. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5929694. [PMID: 35668784 PMCID: PMC9167067 DOI: 10.1155/2022/5929694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the pharmacological mechanism of a Chinese patent drug (Kunling Pill (KLP)) on improving diminished ovarian reserve based on proteomic analysis. Methods. A total of 18 patients divided into three groups (the normal ovary reserve (NOR), diminished ovary reserve (DOR), and KLP groups) undergoing assisted reproductive technology by standard ovarian stimulation protocols were recruited to collect follicular fluid. Data-independent acquisition mass spectrometry was used to identify differentially expressed proteins by nano-LC-MS/MS. Bioinformatic analysis was conducted to predict the functions and pathways of the identified proteins. Clinical, hormonal, and biochemical parameters were also analyzed in the three groups. Results. A total of 144 differentially expressed proteins were screened out, including 56 proteins that were downregulated and 88 proteins that were upregulated in the DOR group compared with the NOR group, while 27 proteins were shared in the KLP-treated group. Among them, 10 proteins were upregulated and 17 proteins were downregulated in the KLP-treated group compared with the DOR group. The most enriched biological processes accounted for 28 GO terms, including cellular process, biological regulation, metabolic process, and regulation of biological process. Significant pathways were associated with fatty acid elongation, fatty acid degradation, fatty acid metabolism, nicotinate and nicotinamide metabolism, and valine, leucine, and isoleucine degradation. Conclusion. Our study provides the proteome profiles of human follicular fluid from DOR patients treated by KLP. Functional analyses of proteome datasets revealed that core proteins (SAA1, MIF, and PRDX5) and related pathways (fatty acid metabolism, nicotinate and nicotinamide metabolism, and tyrosine and purine metabolism) are possible pharmacological mechanisms through which KLP improves DOR. Therefore, these findings may help better understand the complex mechanisms through which DOR is treated by the Chinese patent drug KLP.
Collapse
|
11
|
Brinca AT, Ramalhinho AC, Sousa Â, Oliani AH, Breitenfeld L, Passarinha LA, Gallardo E. Follicular Fluid: A Powerful Tool for the Understanding and Diagnosis of Polycystic Ovary Syndrome. Biomedicines 2022; 10:1254. [PMID: 35740276 PMCID: PMC9219683 DOI: 10.3390/biomedicines10061254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) represents one of the leading causes of anovulatory infertility and affects 5% to 20% of women worldwide. Until today, both the subsequent etiology and pathophysiology of PCOS remain unclear, and patients with PCOS that undergo assisted reproductive techniques (ART) might present a poor to exaggerated response, low oocyte quality, ovarian hyperstimulation syndrome, as well as changes in the follicular fluid metabolites pattern. These abnormalities originate a decrease of Metaphase II (MII) oocytes and decreased rates for fertilization, cleavage, implantation, blastocyst conversion, poor egg to follicle ratio, and increased miscarriages. Focus on obtaining high-quality embryos has been taken into more consideration over the years. Nowadays, the use of metabolomic analysis in the quantification of proteins and peptides in biological matrices might predict, with more accuracy, the success in assisted reproductive technology. In this article, we review the use of human follicular fluid as the matrix in metabolomic analysis for diagnostic and ART predictor of success for PCOS patients.
Collapse
Affiliation(s)
- Ana Teresa Brinca
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
| | - Ana Cristina Ramalhinho
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
- Assisted Reproduction Laboratory of Academic Hospital of Cova da Beira, 6200-251 Covilhã, Portugal;
- C4-Cloud Computing Competence Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Ângela Sousa
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
| | - António Hélio Oliani
- Assisted Reproduction Laboratory of Academic Hospital of Cova da Beira, 6200-251 Covilhã, Portugal;
- São José do Rio Preto School of Medicine, Gynaecology and Obstetrics, São José do Rio Preto 15090-000, Brazil
| | - Luiza Breitenfeld
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
- C4-Cloud Computing Competence Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Luís A. Passarinha
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
- UCIBIO–Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| | - Eugenia Gallardo
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (A.T.B.); (Â.S.); (L.B.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
12
|
Naigaonkar A, Patil K, Joseph S, Hinduja I, Mukherjee S. Ovarian granulosa cells from women with PCOS express low levels of SARS-CoV-2 receptors and co-factors. Arch Gynecol Obstet 2022; 306:547-555. [PMID: 35477803 PMCID: PMC9045021 DOI: 10.1007/s00404-022-06567-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
Abstract
Purpose Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is global pandemic with more than 5 million deaths so far. Female reproductive tract organs express coronavirus-associated receptors and factors (SCARFs), suggesting they may be susceptible to SARS-CoV-2 infection; however, the susceptibility of ovary/follicle/oocyte to the same is still elusive. Co-morbidities like obesity, type-2 diabetes mellitus, cardiovascular disease, etc. increase the risk of SARS-CoV-2 infection. These features are common in women with polycystic ovary syndrome (PCOS), warranting further scope to study SCARFs expression in ovary of these women. Materials and methods SCARFs expression in ovary and ovarian tissues of women with PCOS and healthy women was explored by analyzing publically available microarray datasets. Transcript expressions of SCARFs were investigated in mural and cumulus granulosa cells (MGCs and CGCs) from control and PCOS women undergoing in vitro fertilization (IVF). Results Microarray data revealed that ovary expresses all genes necessary for SARS-CoV-2 infection. PCOS women mostly showed down-regulated/unchanged levels of SCARFs. MGCs and CGCs from PCOS women showed lower expression of receptors ACE2, BSG and DPP4 and protease CTSB than in controls. MGCs showed lower expression of protease CTSL in PCOS than in controls. Expression of TMPRSS2 was not detected in both cell types. Conclusion Human ovarian follicle may be susceptible to SARS-CoV-2 infection. Lower expression of SCARFs in PCOS indicates that the risk of SARS-CoV-2 infection to the ovary may be lesser in these women than controls. This knowledge may help in safe practices at IVF settings in the current pandemic. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-022-06567-4.
Collapse
Affiliation(s)
- Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai, 400012, India
| | - Krutika Patil
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai, 400012, India
| | - Shaini Joseph
- Genetic Research Centre, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai, 400012, India
| | - Indira Hinduja
- P. D. Hinduja National Hospital and Medical Research Centre, Mahim, Mumbai, 400016, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
13
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
14
|
An integrated in silico analysis highlighted angiogenesis regulating miRNA-mRNA network in PCOS pathophysiology. J Assist Reprod Genet 2022; 39:427-440. [PMID: 35032287 PMCID: PMC8760593 DOI: 10.1007/s10815-022-02396-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a heterogeneous endocrinopathy and a leading cause of anovulatory infertility. Angiogenesis is vital for ovarian folliculogenesis. The expression of angiogenesis-associated genes/proteins is altered in the ovary of PCOS women. However, information on microRNAs (miRNAs) regulating their expression is limited. This study aims to identify dysregulated angiogenesis-related genes in the ovary of women with PCOS, to identify miRNAs regulating them, and to construct a miRNA-mRNA network associated with angiogenesis. Methods A comprehensive literature search and reanalysis of seven ovarian GEO microarray datasets were performed to identify differentially expressed angiogenesis-related genes in PCOS. These target genes were used to predict their regulating miRNAs by querying miRNA databases and their expression in the ovary was verified. Panther and STRING database were used for functional enrichment. Gene expression of shortlisted miRNAs was studied in granulosa cells using digital droplet PCR. Results The miRNAs expressed in the ovary and potentially targeting dysregulated angiogenesis-related genes in PCOS were identified and those enriched in angiogenesis-related pathways, like VEGF, FGF, PI3K/Akt, Notch signaling, and ECM interaction were shortlisted. Analysis showed PI3K/Akt signaling was the most enriched pathway. MiR-218-5p, miR-214-3p, miR-20a-5p, and miR-140-3p associated with the PI3K/Akt pathway were found to be up-regulated in granulosa cells of women with PCOS. Conclusions By in silico analysis, we identified crucial dysregulated angiogenesis-related genes, the miRNA-mRNA interactions, and signaling pathways involved in impaired follicular angiogenesis in PCOS. This work provides a novel insight into the mechanism of aberrant ovarian angiogenesis contributing to PCOS pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1007/s10815-022-02396-1.
Collapse
|
15
|
Kuşçu GC, Gürel Ç, Buhur A, Oltulu F, Akman L, Köse T, Yavaşoğlu NÜK, Yavaşoğlu A. The regulatory effects of clomiphene and tamoxifen on mTOR and LC3-II expressions in relation to autophagy in experimental polycystic ovary syndrome (PCOS). Mol Biol Rep 2021; 49:1721-1729. [PMID: 34813001 DOI: 10.1007/s11033-021-06981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a metabolic disease that causes infertility due to anovulation in women in reproductive age. It is known that clomiphene citrate (CC) and tamoxifen citrate (TMX) induce ovulation in women with PCOS. In this study, we aimed to investigate the effects of CC and TMX on the autophagy pathway in PCOS. METHODS AND RESULTS Experimental PCOS model was induced by letrozole (1 mg/kg) in rats by gavage for 21 days. After the last letrozole administration, rats were treated TMX (1 mg/kg) or CC (1 mg/kg) for 5 days. At the end of the experimental procedures, rats in all groups were sacrificed and ovarian tissues were removed. It was observed that mRNA and protein expressions of LC3-II were significantly higher in TMX and CC groups than control and PCOS groups (p < 0.05), while mRNA and protein expressions of mTOR in TMX and CC groups were found significantly lower than control and PCOS groups (p < 0.05). CONCLUSIONS In conclusion, present study suggests that TMX and CC induce autophagy in ovaries with PCOS. Autophagy is a promising target for understanding pathophysiology of this disease and for developing more effective and safe new protocols for the treatment of PCOS-related anovulation.
Collapse
Affiliation(s)
- Gökçe Ceren Kuşçu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Çevik Gürel
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Aylin Buhur
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Fatih Oltulu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Levent Akman
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Altuğ Yavaşoğlu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
16
|
Goumenou A, Delaunay N, Pichon V. Recent Advances in Lectin-Based Affinity Sorbents for Protein Glycosylation Studies. Front Mol Biosci 2021; 8:746822. [PMID: 34778373 PMCID: PMC8585745 DOI: 10.3389/fmolb.2021.746822] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Glycosylation is one of the most significant post-translational modifications occurring to proteins, since it affects some of their basic properties, such as their half-life or biological activity. The developments in analytical methodologies has greatly contributed to a more comprehensive understanding of the quantitative and qualitative characteristics of the glycosylation state of proteins. Despite those advances, the difficulty of a full characterization of glycosylation still remains, mainly due to the complexity of the glycoprotein and/or glycopeptide mixture especially when they are present in complex biological samples. For this reason, various techniques that allow a prior selective enrichment of exclusively glycosylated proteins or glycopeptides have been developed in the past and are coupled either on- or off- line with separation and detection methods. One of the most commonly implemented enrichment methods includes the use of lectin proteins immobilized on various solid supports. Lectins are a group of different, naturally occurring proteins that share a common characteristic, which concerns their affinity for specific sugar moieties of glycoproteins. This review presents the different formats and conditions for the use of lectins in affinity chromatography and in solid phase extraction, including their use in dispersive mode, along with the recent progress made on either commercial or home-made lectin-based affinity sorbents, which can lead to a fast and automated glycosylation analysis.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France.,Sorbonne University, Paris, France
| |
Collapse
|
17
|
Pei CZ, Jin L, Baek KH. Pathogenetic analysis of polycystic ovary syndrome from the perspective of omics. Biomed Pharmacother 2021; 142:112031. [PMID: 34411918 DOI: 10.1016/j.biopha.2021.112031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common gynecological endocrine disease, involving multiple genes, multiple pathways, and complex hormone secretion processes. Hence, the pathogenesis of PCOS cannot be explained by a single factor. Omics analysis includes genomics, transcriptomics, and proteomics, which are fast and effective methods for studying the pathogenesis of diseases. PCOS is primarily characterized by androgen excess, and reproductive and metabolic dysfunctions. The application of omics analysis in the body fluids, blood, cells or tissues of women with PCOS offers the potential for unexpected molecular advantages in explaining new mechanisms of PCOS etiology and pathophysiology, and provides new perspectives for identifying potential biomarkers and developing new therapeutic targets. At present, several omics analyses have been applied to produce complex datasets. In this manuscript, the recent advances in omics research on PCOS are summarized, aiming at an important and parallel review of the newly published research.
Collapse
Affiliation(s)
- Chang-Zhu Pei
- Department of Biomedical Science, Cell and Gene Therapy Research Institute, CHA University, Bundang CHA Hospital, Gyeonggi-Do 13488, Republic of Korea
| | - Lan Jin
- Department of Clinical Laboratory, Yanbian Maternity and Child Health Care Hospital, Jilin Provincial Yanji-Shi, 133000, China
| | - Kwang-Hyun Baek
- Department of Biomedical Science, Cell and Gene Therapy Research Institute, CHA University, Bundang CHA Hospital, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
18
|
Patil K, Hinduja I, Mukherjee S. Alteration in angiogenic potential of granulosa-lutein cells and follicular fluid contributes to luteal defects in polycystic ovary syndrome. Hum Reprod 2021; 36:1052-1064. [PMID: 33377483 DOI: 10.1093/humrep/deaa351] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Is angiogenic potential of follicular fluid (FF) and granulosa-lutein cells (GLCs) altered in polycystic ovary syndrome (PCOS) and does it play a role in corpus luteum (CL) defect observed in them? SUMMARY ANSWER FF and GLCs of women with PCOS show reduced expression of pro-angiogenic factors compared to controls and exhibit a diminished capacity to induce angiogenesis. WHAT IS KNOWN ALREADY In women with PCOS, CL insufficiency and frequent miscarriage are reported, which may be due to defect in CL. The development of new blood vessels is essential to promote ovarian folliculogenesis and functional CL formation. The vasculature formation in CL which is important for its function is still unexplored in these women. STUDY DESIGN, SIZE, DURATION This case-control study was conducted in 30 healthy control women and 30 women with PCOS undergoing controlled ovarian hyperstimulation for IVF. The FF, GLCs and serum were collected from all participants during ovum pick up. PARTICIPANTS/MATERIALS, SETTING, METHODS The capacity of FF to induce angiogenesis was assessed by measuring levels of pro-angiogenic factors vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) and its tube formation and wound healing potential using human umbilical vein endothelial cells (HUVECs). We investigated the angiogenic potential and endothelial cell-like nature of GLCs using several approaches such as the expression of angiogenic genes by quantitative PCR, DiI-conjugated acetylated low-density lipoproteins (Dil-Ac-LDL) internalization assay, tube formation assay, expression of endothelial cell markers by immunofluorescence analysis. In addition, correlation of transcript levels of angiogenic genes with oocyte parameters was studied. MAIN RESULTS AND THE ROLE OF CHANCE FF and serum levels of VEGF and FGF2 were significantly higher and lower, respectively, in PCOS compared to controls. The tube formation and wound healing capacity of HUVECs was found to be reduced when measured after supplementation with FF of women with PCOS compared to controls. This suggests a decreased angiogenic capacity of FF in women with PCOS. Tube formation (P = 0.003) and Dil-Ac-LDL internalization (P = 0.03) ability of GLCs were significantly reduced in women with PCOS compared to controls. Protein expression levels of endothelial markers, vascular endothelial growth factor A (VEGFA) (P = 0.004), vascular endothelial growth factor receptor 2 (VEGFR2) (P = 0.011), TEK Receptor Tyrosine Kinase (Tie-2) (P = 0.026), fibroblast growth factor receptor 1 (FGFR1) (P = 0.026) and CD31 (P = 0.035) and transcript levels of angiogenic genes VEGFA (P = 0.042), hypoxia inducing factor 1A (HIF1A) (P = 0.025), FGF2 (P = 0.038), angiopoietin 1 (ANGPT1) (P = 0.028), heparin sulfate proteoglycan 2 (HSPG2) (P = 0.016), ADAM metallopeptidase with thrombospondin type1 motif, 1 (ADAMTS1) (P = 0.027) and fibronectin 1 (FN1) (P = 0.016) were found to be low in GLCs of PCOS compared to controls. Thus, the findings of this study indicate that endothelial cell-like characteristics of GLCs were significantly decreased in PCOS. Furthermore, transcript levels of VEGFA (r = 0.46, P = 0.009), ADAMTS1 (r = 0.55, P = 0.001), FGF2 (r = 0.42, P = 0.022) and ANGPT2 (r = 0.47, P = 0.008) showed a positive correlation with oocyte fertilization rate. LIMITATIONS, REASONS FOR CAUTION The vasculature formation in CL is not possible to study in women, but we explored the angiogenic characteristics of FF and GLC obtained from women with PCOS to speculate any vascularization defect of CL in these women. The FF and GLCs were obtained from the stimulated cycle during oocyte retrieval, which may not exactly mimic the in-vivo condition. The small sample size is another limitation of this study. Larger sample size and support by color Doppler studies on CL blood flow would help to strengthen our findings. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that the altered angiogenic potential of FF and GLCs may affect vasculature development required for CL formation and function in PCOS. These findings pave the way to devise therapeutic strategies to support angiogenesis process in follicle of women with PCOS, which may improve CL insufficiency, progesterone levels and prevent frequent miscarriages in these women. Furthermore, our study also hypothesizes that the vascularization around the ovarian follicles is also compromised which may lead to the growth arrest of the follicles in PCOS, however, this needs thorough investigations. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Grant BT/PR16524/MED/97/346/2016 from the Department of Biotechnology, Government of India. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Krutika Patil
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| | - Indira Hinduja
- Hinduja IVF Centre, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai 400016, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| |
Collapse
|
19
|
Gasparini C, Pilastro A, Evans JP. The role of female reproductive fluid in sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200077. [PMID: 33070736 DOI: 10.1098/rstb.2020.0077] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of non-gametic components of the ejaculate (seminal fluid) in fertility and sperm competitiveness is now well established. Surprisingly, however, we know far less about female reproductive fluid (FRF) in the context of sexual selection, and insights into male-FRF interactions in the context of sperm competition have only recently emerged. Despite this limited knowledge, evidence from taxonomically diverse species has revealed insights into the effects of FRF on sperm traits that have previously been implicated in studies of sperm competition. Specifically, through the differential effects of FRF on a range of sperm traits, including chemoattraction and alterations in sperm velocity, FRF has been shown to exert positive phenotypic effects on the sperm of males that are preferred as mating partners, or those from the most compatible or genetically diverse males. Despite these tantalizing insights into the putative sexually selected functions of FRF, we largely lack a mechanistic understanding of these processes. Taken together, the evidence presented here highlights the likely ubiquity of FRF-regulated biases in fertilization success across a diverse range of taxa, thus potentially elevating the importance of FRF to other non-gametic components that have so far been studied largely in males. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Clelia Gasparini
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 WA, Australia
| |
Collapse
|
20
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
21
|
Rapani A, Nikiforaki D, Karagkouni D, Sfakianoudis K, Tsioulou P, Grigoriadis S, Maziotis E, Pantou A, Voutsina A, Pantou A, Koutsilieris M, Hatzigeorgiou A, Pantos K, Simopoulou M. Reporting on the Role of miRNAs and Affected Pathways on the Molecular Backbone of Ovarian Insufficiency: A Systematic Review and Critical Analysis Mapping of Future Research. Front Cell Dev Biol 2020; 8:590106. [PMID: 33511114 PMCID: PMC7835544 DOI: 10.3389/fcell.2020.590106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Ovarian insufficiency is identified as a perplexing entity in the long list of pathologies impairing fertility dynamics. The three distinct classifications of ovarian insufficiency are poor ovarian response, premature ovarian insufficiency/failure, and advanced maternal age, sharing the common denominator of deteriorated ovarian reserve. Despite efforts to define clear lines among the three, the vast heterogeneity and overlap of clinical characteristics renders their diagnosis and management challenging. Lack of a consensus has prompted an empirically based management coupled by uncertainty from the clinicians' perspective. Profiling of patients in the era of precision medicine seems to be the way forward, while the necessity for a novel approach is underlined. Implicating miRNAs in the quest for patient profiling is promising in light of their fundamental role in cellular and gene expression regulation. To this end, the current study sets out to explore and compare the three pathophysiologies-from a molecular point of view-in order to enable profiling of patients in the context of in vitro fertilization treatment and enrich the data required to practice individualized medicine. Following a systematic investigation of literature, data referring to miRNAs were collected for each patient category based on five included studies. miRNA-target pairs were retrieved from the DIANA-TarBase repository and microT-CDS. Gene and miRNA annotations were derived from Ensembl and miRbase. A subsequent gene-set enrichment analysis of miRNA targets was performed for each category separately. A literature review on the most crucial of the detected pathways was performed to reveal their relevance to fertility deterioration. Results supported that all three pathophysiologies share a common ground regarding the affected pathways, naturally attributed to the common denominator of ovarian insufficiency. As evidenced, miRNAs could be employed to explore the fine lines and diverse nature of pathophysiology since they constitute invaluable biomarkers. Interestingly, it is the differentiation through miRNAs and not through the molecular affected pathways that corresponds to the three distinctive categories. Alarming discrepancies among publications were revealed, pertaining to employment of empirical and arbitrary criteria in categorizing the patients. Following bioinformatic analysis, the final step of the current study consisted of a critical analysis of the molecular data sourced, providing a clear and unique insight into the physiological mechanisms involved. It is our intention to contribute to mapping future research dedicated to ovarian insufficiency and to help researchers navigate the overwhelming information published in molecular studies.
Collapse
Affiliation(s)
- Anna Rapani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Nikiforaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | | | - Petroula Tsioulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Amelia Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemis Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | | | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|