1
|
Jin X, Chen Y, Wang G. Cancer-associated fibroblasts affect breast cancer cell sensitivity to chemotherapeutic agents by regulating NRBP2. Toxicol Res (Camb) 2024; 13:tfae204. [PMID: 39664500 PMCID: PMC11631068 DOI: 10.1093/toxres/tfae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Objective To uncover the role of nuclear receptor-binding protein 2 (NRBP2) in cancer-associated fibroblasts (CAFs), and CAFmediated TAM sensitivity in breast cancer (BC). Methods 10 pairs of matched tumor tissues and adjacent normal tissues were collected and CAFs and normal fibroblasts (NFs) were isolated. CCK-8 as well as colony formation assays showed the effects on cell growth. qPCR and Immunoblot showed the expression of NRBP2 in CAFs. FCM as well as Immunoblot assays exhibited the effects on cell apoptosis. Immunoblot further confirmed the mechanism. Results CAFs contributed to BC cell growth. In addition, the expression of NRBP2 is downregulated in CAFs. NRBP2 suppressed CAF-induced resistance in BC cells. Further, NRBP2 expression in CAF group increased TAM induced apoptosis. Mechanically, NRBP2 in CAFs inhibited Akt pathway, therefore suppressed resistance in BC cells. Conclusion CAFs affected BC cell sensitivity to TAM by regulating NRBP2.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Surgical Oncology, Taizhou Municipal Hospital, 381 Zhongshan East Road, Jiaojiang District, Taizhou,Zhejiang 318000, China
| | - Yong Chen
- Department of Surgical Oncology, Taizhou Municipal Hospital, 381 Zhongshan East Road, Jiaojiang District, Taizhou,Zhejiang 318000, China
| | - Gui Wang
- Department of General Surgery, Longquan People’s Hospital, No. 699, Dongcha Road, Longquan District, Lishui, Zhejiang 323700, China
| |
Collapse
|
2
|
Zhu M, Hu J, Pan Y, Jiang Q, Shu C. Magnoflorine attenuates Ang II-induced cardiac remodeling via promoting AMPK-regulated autophagy. Cardiovasc Diagn Ther 2024; 14:576-588. [PMID: 39263476 PMCID: PMC11384461 DOI: 10.21037/cdt-24-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Background Heart failure (HF) remains one of the most common events in the progression of hypertension. Magnoflorine (MNF) has been shown beneficial effects on the cardiovascular system. However, the action of MNF on angiotensin (Ang) II-induced cardiac remodeling and its underlying mechanisms have not yet been characterised. Here, we assessed the action of MNF in the development of hypertension-related HF. Methods C57BL/6 male mice were subjected to Ang II through a micro-osmotic pump infusion continuously for 4 weeks to induce hypertensive HF. MNF (10 and 20 mg/kg) was administered in the final 2 weeks. Ang II content was measured by enzyme-linked immunosorbent assay (ELISA) kit. Values of ejection fraction (EF) and fractional shortening (FS) were detected using an ultrasound diagnostic instrument. The mRNA levels of hypertrophic and fibrotic genes were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Haematoxylin and eosin (H&E), wheat germ agglutinin (WGA), Masson trichrome, and Sirius Red staining were used to analyse pathologic changes in heart tissues. The expression levels of phosphorylated AMP-activated protein kinase (AMPK), light chain 3 microtubule associated protein II (LC3 II) to LC3 I, and p62 were detected by western blot assay. Results MNF significantly improved cardiac dysfunction and the content of creatine kinase-MB without altering blood pressure in Ang II-challenged mice. MNF obviously corrected the phenotypes of cardiac hypertrophy and fibrosis, including the high mRNA levels of atrial natriuretic peptide (Anp), brain natriuretic peptide (Bnp), collagen1a (Col1a1), transforming growth factor beta (Tgfb1), enlarged myocardial areas, and increased positive areas of Masson trichrome and Sirius Red staining. In addition, MNF alleviated oxidative injury, reflected by the upregulation of glutathione and the downregulation of reactive oxygen species and malondialdehyde. The activation of AMPK was elevated accompanied by an increased level of autophagy by MNF in hypertensive heart tissues. The therapeutic action of MNF was confirmed in Ang II-challenged H9c2 cells. Specifically, the AMPK inhibitor could eliminate the autophagy pathway in which MNF is involved. Conclusions MNF has benefits in hypertension-induced cardiac remodeling, which was partially associated with the improvement of oxidative stress via the mediation of the AMPK/autophagy axis.
Collapse
Affiliation(s)
- Meili Zhu
- Department of Rehabilitation Medicine, the First People's Hospital of Yongkang, Yongkang, China
| | - Jiangbiao Hu
- Department of Rehabilitation Medicine, the First People's Hospital of Yongkang, Yongkang, China
| | - Yifan Pan
- Department of Cardiology, the First People's Hospital of Yongkang, Yongkang, China
| | - Qian Jiang
- Department of Rehabilitation Medicine, the First People's Hospital of Yongkang, Yongkang, China
| | - Chang Shu
- Department of Medical, the First People's Hospital of Yongkang, Yongkang, China
| |
Collapse
|
3
|
Meddeb M, Koleini N, Binek A, Keykhaei M, Darehgazani R, Kwon S, Aboaf C, Margulies KB, Bedi KC, Lehar M, Sharma K, Hahn VS, Van Eyk JE, Drachenberg CI, Kass DA. Myocardial ultrastructure of human heart failure with preserved ejection fraction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:907-914. [PMID: 39196036 PMCID: PMC11498130 DOI: 10.1038/s44161-024-00516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/26/2024] [Indexed: 08/29/2024]
Abstract
Over half of patients with heart failure have a preserved ejection fraction (>50%, called HFpEF), a syndrome with substantial morbidity/mortality and few effective therapies1. Its dominant comorbidity is now obesity, which worsens disease and prognosis1-3. Myocardial data from patients with morbid obesity and HFpEF show depressed myocyte calcium-stimulated tension4 and disrupted gene expression of mitochondrial and lipid metabolic pathways5,6, abnormalities shared by human HF with a reduced EF but less so in HFpEF without severe obesity. The impact of severe obesity on human HFpEF myocardial ultrastructure remains unexplored. Here we assessed the myocardial ultrastructure in septal biopsies from patients with HFpEF using transmission electron microscopy. We observed sarcomere disruption and sarcolysis, mitochondrial swelling with cristae separation and dissolution and lipid droplet accumulation that was more prominent in the most obese patients with HFpEF and not dependent on comorbid diabetes. Myocardial proteomics revealed associated reduction in fatty acid uptake, processing and oxidation and mitochondrial respiration proteins, particularly in very obese patients with HFpEF.
Collapse
Grants
- R01 HL149891 NHLBI NIH HHS
- HL166565-01 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL007227 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL149891 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 HL007227 NHLBI NIH HHS
- R35 HL166565 NHLBI NIH HHS
- 20SRG35490443 American Heart Association (American Heart Association, Inc.)
- 23POST1026402 American Heart Association (American Heart Association, Inc.)
- R35 HL135827 NHLBI NIH HHS
- HL155346 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL166565 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL135827 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL155346 NHLBI NIH HHS
- K23HL166770 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K23 HL166770 NHLBI NIH HHS
- 16SFRN28620000 American Heart Association (American Heart Association, Inc.)
- L30 HL138884 NHLBI NIH HHS
Collapse
Affiliation(s)
- Mariam Meddeb
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Navid Koleini
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohammad Keykhaei
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Reyhane Darehgazani
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Seoyoung Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Celia Aboaf
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ken C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamed Lehar
- Department of Anesthesia, Johns Hopkins University, Baltimore, MD, USA
| | - Kavita Sharma
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Virginia S Hahn
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Jayaraman P, Rajagopal M, Paranjpe I, Liharska L, Suarez-Farinas M, Thompson R, Del Valle DM, Beckmann N, Oh W, Gulamali FF, Kauffman J, Gonzalez-Kozlova E, Dellepiane S, Vasquez-Rios G, Vaid A, Jiang J, Chen A, Sakhuja A, Chen S, Kenigsberg E, He JC, Coca SG, Chan L, Schadt E, Merad M, Kim-Schulze S, Gnjatic S, Tsalik E, Langley R, Charney AW, Nadkarni GN. Peripheral Transcriptomics in Acute and Long-Term Kidney Dysfunction in SARS-CoV2 Infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.25.23297469. [PMID: 37961671 PMCID: PMC10635190 DOI: 10.1101/2023.10.25.23297469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Acute kidney injury (AKI) is common in hospitalized patients with SARS-CoV2 infection despite vaccination and leads to long-term kidney dysfunction. However, peripheral blood molecular signatures in AKI from COVID-19 and their association with long-term kidney dysfunction are yet unexplored. Methods In patients hospitalized with SARS-CoV2, we performed bulk RNA sequencing using peripheral blood mononuclear cells(PBMCs). We applied linear models accounting for technical and biological variability on RNA-Seq data accounting for false discovery rate (FDR) and compared functional enrichment and pathway results to a historical sepsis-AKI cohort. Finally, we evaluated the association of these signatures with long-term trends in kidney function. Results Of 283 patients, 106 had AKI. After adjustment for sex, age, mechanical ventilation, and chronic kidney disease (CKD), we identified 2635 significant differential gene expressions at FDR<0.05. Top canonical pathways were EIF2 signaling, oxidative phosphorylation, mTOR signaling, and Th17 signaling, indicating mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Comparison with sepsis associated AKI showed considerable overlap of key pathways (48.14%). Using follow-up estimated glomerular filtration rate (eGFR) measurements from 115 patients, we identified 164/2635 (6.2%) of the significantly differentiated genes associated with overall decrease in long-term kidney function. The strongest associations were 'autophagy', 'renal impairment via fibrosis', and 'cardiac structure and function'. Conclusions We show that AKI in SARS-CoV2 is a multifactorial process with mitochondrial dysfunction driven by ER stress whereas long-term kidney function decline is associated with cardiac structure and function and immune dysregulation. Functional overlap with sepsis-AKI also highlights common signatures, indicating generalizability in therapeutic approaches. SIGNIFICANCE STATEMENT Peripheral transcriptomic findings in acute and long-term kidney dysfunction after hospitalization for SARS-CoV2 infection are unclear. We evaluated peripheral blood molecular signatures in AKI from COVID-19 (COVID-AKI) and their association with long-term kidney dysfunction using the largest hospitalized cohort with transcriptomic data. Analysis of 283 hospitalized patients of whom 37% had AKI, highlighted the contribution of mitochondrial dysfunction driven by endoplasmic reticulum stress in the acute stages. Subsequently, long-term kidney function decline exhibits significant associations with markers of cardiac structure and function and immune mediated dysregulation. There were similar biomolecular signatures in other inflammatory states, such as sepsis. This enhances the potential for repurposing and generalizability in therapeutic approaches.
Collapse
|
5
|
Simonson B, Chaffin M, Hill MC, Atwa O, Guedira Y, Bhasin H, Hall AW, Hayat S, Baumgart S, Bedi KC, Margulies KB, Klattenhoff CA, Ellinor PT. Single-nucleus RNA sequencing in ischemic cardiomyopathy reveals common transcriptional profile underlying end-stage heart failure. Cell Rep 2023; 42:112086. [PMID: 36790929 PMCID: PMC10423750 DOI: 10.1016/j.celrep.2023.112086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) is the leading cause of heart failure worldwide, yet the cellular and molecular signature of this disease is largely unclear. Using single-nucleus RNA sequencing (snRNA-seq) and integrated computational analyses, we profile the transcriptomes of over 99,000 human cardiac nuclei from the non-infarct region of the left ventricle of 7 ICM transplant recipients and 8 non-failing (NF) controls. We find the cellular composition of the ischemic heart is significantly altered, with decreased cardiomyocytes and increased proportions of lymphatic, angiogenic, and arterial endothelial cells in patients with ICM. We show that there is increased LAMININ signaling from endothelial cells to other cell types in ICM compared with NF. Finally, we find that the transcriptional changes that occur in ICM are similar to those in hypertrophic and dilated cardiomyopathies and that the mining of these combined datasets can identify druggable genes that could be used to target end-stage heart failure.
Collapse
Affiliation(s)
- Bridget Simonson
- Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark Chaffin
- Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew C Hill
- Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ondine Atwa
- Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yasmine Guedira
- Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Harshit Bhasin
- Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amelia W Hall
- Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sikander Hayat
- Precision Cardiology Laboratory, Bayer US, LLC, Cambridge, MA 02142, USA
| | - Simon Baumgart
- Precision Cardiology Laboratory, Bayer US, LLC, Cambridge, MA 02142, USA
| | - Kenneth C Bedi
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Patrick T Ellinor
- Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
6
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
7
|
Barreiro K, Lay AC, Leparc G, Tran VDT, Rosler M, Dayalan L, Burdet F, Ibberson M, Coward RJM, Huber TB, Krämer BK, Delic D, Holthofer H. An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles. J Extracell Vesicles 2023; 12:e12304. [PMID: 36785873 PMCID: PMC9925963 DOI: 10.1002/jev2.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
| | - Abigail C. Lay
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - German Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Van Du T. Tran
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Marcel Rosler
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Lusyan Dayalan
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Frederic Burdet
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mark Ibberson
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Richard J. M. Coward
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Tobias B. Huber
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Harry Holthofer
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
8
|
Alonso-Villa E, Bonet F, Hernandez-Torres F, Campuzano Ó, Sarquella-Brugada G, Quezada-Feijoo M, Ramos M, Mangas A, Toro R. The Role of MicroRNAs in Dilated Cardiomyopathy: New Insights for an Old Entity. Int J Mol Sci 2022; 23:13573. [PMID: 36362356 PMCID: PMC9659086 DOI: 10.3390/ijms232113573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and systolic dysfunction. In most cases, DCM is progressive, leading to heart failure (HF) and death. This cardiomyopathy has been considered a common and final phenotype of several entities. DCM occurs when cellular pathways fail to maintain the pumping function. The etiology of this disease encompasses several factors, such as ischemia, infection, autoimmunity, drugs or genetic susceptibility. Although the prognosis has improved in the last few years due to red flag clinical follow-up, early familial diagnosis and ongoing optimization of treatment, due to its heterogeneity, there are no targeted therapies available for DCM based on each etiology. Therefore, a better understanding of the mechanisms underlying the pathophysiology of DCM will provide novel therapeutic strategies against this cardiac disease and their different triggers. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play key roles in post-transcriptional gene silencing by targeting mRNAs for translational repression or, to a lesser extent, degradation. A growing number of studies have demonstrated critical functions of miRNAs in cardiovascular diseases (CVDs), including DCM, by regulating mechanisms that contribute to the progression of the disease. Herein, we summarize the role of miRNAs in inflammation, endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial dysfunction, autophagy, cardiomyocyte apoptosis and fibrosis, exclusively in the context of DCM.
Collapse
Affiliation(s)
- Elena Alonso-Villa
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Óscar Campuzano
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, School of Medicine, University of Cadiz, 11009 Cadiz, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| |
Collapse
|
9
|
Machine learning and bioinformatics to identify 8 autophagy-related biomarkers and construct gene regulatory networks in dilated cardiomyopathy. Sci Rep 2022; 12:15030. [PMID: 36056063 PMCID: PMC9440113 DOI: 10.1038/s41598-022-19027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a condition of impaired ventricular remodeling and systolic diastole that is often complicated by arrhythmias and heart failure with a poor prognosis. This study attempted to identify autophagy-related genes (ARGs) with diagnostic biomarkers of DCM using machine learning and bioinformatics approaches. Differential analysis of whole gene microarray data of DCM from the Gene Expression Omnibus (GEO) database was performed using the NetworkAnalyst 3.0 platform. Differentially expressed genes (DEGs) matching (|log2FoldChange ≥ 0.8, p value < 0.05|) were obtained in the GSE4172 dataset by merging ARGs from the autophagy gene libraries, HADb and HAMdb, to obtain autophagy-related differentially expressed genes (AR-DEGs) in DCM. The correlation analysis of AR-DEGs and their visualization were performed using R language. Gene Ontology (GO) enrichment analysis and combined multi-database pathway analysis were served by the Enrichr online enrichment analysis platform. We used machine learning to screen the diagnostic biomarkers of DCM. The transcription factors gene regulatory network was constructed by the JASPAR database of the NetworkAnalyst 3.0 platform. We also used the drug Signatures database (DSigDB) drug database of the Enrichr platform to screen the gene target drugs for DCM. Finally, we used the DisGeNET database to analyze the comorbidities associated with DCM. In the present study, we identified 23 AR-DEGs of DCM. Eight (PLEKHF1, HSPG2, HSF1, TRIM65, DICER1, VDAC1, BAD, TFEB) molecular markers of DCM were obtained by two machine learning algorithms. Transcription factors gene regulatory network was established. Finally, 10 gene-targeted drugs and complications for DCM were identified.
Collapse
|
10
|
Sun S, Lu J, Lai C, Feng Z, Sheng X, Liu X, Wang Y, Huang C, Shen Z, Lv Q, Fu G, Shang M. Transcriptome analysis uncovers the autophagy-mediated regulatory patterns of the immune microenvironment in dilated cardiomyopathy. J Cell Mol Med 2022; 26:4101-4112. [PMID: 35752958 PMCID: PMC9279601 DOI: 10.1111/jcmm.17455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between autophagy and immunity has been well studied. However, little is known about the role of autophagy in the immune microenvironment during the progression of dilated cardiomyopathy (DCM). Therefore, this study aims to uncover the effect of autophagy on the immune microenvironment in the context of DCM. By investigating the autophagy gene expression differences between healthy donors and DCM samples, 23 dysregulated autophagy genes were identified. Using a series of bioinformatics methods, 13 DCM‐related autophagy genes were screened and used to construct a risk prediction model, which can well distinguish DCM and healthy samples. Then, the connections between autophagy and immune responses including infiltrated immunocytes, immune reaction gene‐sets and human leukocyte antigen (HLA) genes were systematically evaluated. In addition, two autophagy‐mediated expression patterns in DCM were determined via the unsupervised consensus clustering analysis, and the immune characteristics of different patterns were revealed. In conclusion, our study revealed the strong effect of autophagy on the DCM immune microenvironment and provided new insights to understand the pathogenesis and treatment of DCM.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Jiangting Lu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Chaojie Lai
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhaojin Feng
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Xia Sheng
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Xianglan Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Yao Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Chengchen Huang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Fan Y, Shao J, Wei S, Song C, Li Y, Jiang S. Self-eating and Heart: The Emerging Roles of Autophagy in Calcific Aortic Valve Disease. Aging Dis 2021; 12:1287-1303. [PMID: 34341709 PMCID: PMC8279526 DOI: 10.14336/ad.2021.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a self-degradative pathway by which subcellular elements are broken down intracellularly to maintain cellular homeostasis. Cardiac autophagy commonly decreases with aging and is accompanied by the accumulation of misfolded proteins and dysfunctional organelles, which are undesirable to the cell. Reduction of autophagy over time leads to aging-related cardiac dysfunction and is inversely related to longevity. However, despite the increasing interest in autophagy in cardiac diseases and aging, the process remains an undervalued and disregarded object in calcific valvular disease. Neither the nature through which autophagy is triggered nor the interplay between autophagic machinery and targeted molecules during aortic valve calcification are fully understood. Recently, the upregulation of autophagy has been shown to result in cardioprotective effects against cell death as well as its origin. Here, we review the evidence that shows how autophagy can be both beneficial and detrimental as it pertains to aortic valve calcification in the heart.
Collapse
Affiliation(s)
- Yunlong Fan
- Medical School of Chinese PLA, Beijing 100853, China.
- Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiakang Shao
- Medical School of Chinese PLA, Beijing 100853, China.
| | - Shixiong Wei
- Medical School of Chinese PLA, Beijing 100853, China.
- Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Song
- Medical School of Chinese PLA, Beijing 100853, China.
- Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Yanan Li
- Medical School of Chinese PLA, Beijing 100853, China.
| | - Shengli Jiang
- Medical School of Chinese PLA, Beijing 100853, China.
- Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Collins HE, Kane MS, Litovsky SH, Darley-Usmar VM, Young ME, Chatham JC, Zhang J. Mitochondrial Morphology and Mitophagy in Heart Diseases: Qualitative and Quantitative Analyses Using Transmission Electron Microscopy. FRONTIERS IN AGING 2021; 2:670267. [PMID: 35822027 PMCID: PMC9261312 DOI: 10.3389/fragi.2021.670267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
Transmission electron microscopy (TEM) has long been an important technique, capable of high degree resolution and visualization of subcellular structures and organization. Over the last 20 years, TEM has gained popularity in the cardiovascular field to visualize changes at the nanometer scale in cardiac ultrastructure during cardiovascular development, aging, and a broad range of pathologies. Recently, the cardiovascular TEM enabled the studying of several signaling processes impacting mitochondrial function, such as mitochondrial fission/fusion, autophagy, mitophagy, lysosomal degradation, and lipophagy. The goals of this review are to provide an overview of the current usage of TEM to study cardiac ultrastructural changes; to understand how TEM aided the visualization of mitochondria, autophagy, and mitophagy under normal and cardiovascular disease conditions; and to discuss the overall advantages and disadvantages of TEM and potential future capabilities and advancements in the field.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, KY, United States
| | - Mariame Selma Kane
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Silvio H. Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Li F, Wang J, Song Y, Shen D, Zhao Y, Li C, Fu M, Wang Y, Qi B, Han X, Sun A, Zhou J, Ge J. Qiliqiangxin alleviates Ang II-induced CMECs apoptosis by downregulating autophagy via the ErbB2-AKT-FoxO3a axis. Life Sci 2021; 273:119239. [PMID: 33652033 DOI: 10.1016/j.lfs.2021.119239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Our previous work revealed the protective effect of Qiliqiangxin (QLQX) on cardiac microvascular endothelial cells (CMECs), but the underlying mechanisms remain unclear. We aimed to investigate whether QLQX exerts its protective effect against high-concentration angiotensin II (Ang II)-induced CMEC apoptosis through the autophagy machinery. CMECs were cultured in high-concentration Ang II (1 μM) medium in the presence or absence of QLQX for 48 h. We found that QLQX obviously inhibited Ang II-triggered autophagosome synthesis and apoptosis in cultured CMECs. QLQX-mediated protection against Ang II-induced CMEC apoptosis was reversed by the autophagy activator rapamycin. Specifically, deletion of ATG7 in cultured CMECs indicated a detrimental role of autophagy in Ang II-induced CMEC apoptosis. QLQX reversed Ang II-mediated ErbB2 phosphorylation impairment. Furthermore, inhibition of ErbB2 phosphorylation with lapatinib in CMECs revealed that QLQX-induced downregulation of Ang II-activated autophagy and apoptosis was ErbB2 phosphorylation-dependent via the AKT-FoxO3a axis. Activation of ErbB2 phosphorylation by Neuregulin-1β achieved a similar CMEC-protective effect as QLQX in high-concentration Ang II medium, and this effect was also abolished by autophagy activation. These results show that the CMEC-protective effect of QLQX under high-concentration Ang II conditions could be partly attributable to QLQX-mediated ErbB2 phosphorylation-dependent downregulation of autophagy via the AKT-FoxO3a axis.
Collapse
Affiliation(s)
- Fuhai Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jingfeng Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yu Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Dongli Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chaofu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Mingqiang Fu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yanyan Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Baozheng Qi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Xueting Han
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jingmin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Mubagwa K. Cardiac effects and toxicity of chloroquine: a short update. Int J Antimicrob Agents 2020; 56:106057. [PMID: 32565195 PMCID: PMC7303034 DOI: 10.1016/j.ijantimicag.2020.106057] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
There is currently increased interest in the use of the antimalarial drugs chloroquine and hydroxychloroquine for the treatment of other diseases, including cancer and viral infections such as coronavirus disease 2019 (COVID-19). However, the risk of cardiotoxic effects tends to limit their use. In this review, the effects of these drugs on the electrical and mechanical activities of the heart as well as on remodelling of cardiac tissue are presented and the underlying molecular and cellular mechanisms are discussed. The drugs can have proarrhythmic as well as antiarrhythmic actions resulting from their inhibition of ion channels, including voltage-dependent Na+ and Ca2+ channels, background and voltage-dependent K+ channels, and pacemaker channels. The drugs also exert a vagolytic effect due at least in part to a muscarinic receptor antagonist action. They also interfere with normal autophagy flux, an effect that could aggravate ischaemia/reperfusion injury or post-infarct remodelling. Most of the toxic effects occur at high concentrations, following prolonged drug administration or in the context of drug associations.
Collapse
Affiliation(s)
- Kanigula Mubagwa
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR Congo.
| |
Collapse
|
15
|
Radiation Response of Murine Embryonic Stem Cells. Cells 2020; 9:cells9071650. [PMID: 32660081 PMCID: PMC7408589 DOI: 10.3390/cells9071650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
To understand the mechanisms of disturbed differentiation and development by radiation, murine CGR8 embryonic stem cells (mESCs) were exposed to ionizing radiation and differentiated by forming embryoid bodies (EBs). The colony forming ability test was applied for survival and the MTT test for viability determination after X-irradiation. Cell cycle progression was determined by flow cytometry of propidium iodide-stained cells, and DNA double strand break (DSB) induction and repair by γH2AX immunofluorescence. The radiosensitivity of mESCs was slightly higher compared to the murine osteoblast cell line OCT-1. The viability 72 h after X-irradiation decreased dose-dependently and was higher in the presence of leukemia inhibitory factor (LIF). Cells exposed to 2 or 7 Gy underwent a transient G2 arrest. X-irradiation induced γH2AX foci and they disappeared within 72 h. After 72 h of X-ray exposure, RNA was isolated and analyzed using genome-wide microarrays. The gene expression analysis revealed amongst others a regulation of developmental genes (Ada, Baz1a, Calcoco2, Htra1, Nefh, S100a6 and Rassf6), downregulation of genes involved in glycolysis and pyruvate metabolism whereas upregulation of genes related to the p53 signaling pathway. X-irradiated mESCs formed EBs and differentiated toward cardiomyocytes but their beating frequencies were lower compared to EBs from unirradiated cells. These results suggest that X-irradiation of mESCs deregulate genes related to the developmental process. The most significant biological processes found to be altered by X-irradiation in mESCs were the development of cardiovascular, nervous, circulatory and renal system. These results may explain the X-irradiation induced-embryonic lethality and malformations observed in animal studies.
Collapse
|
16
|
Olkowski AA, Wojnarowicz C, Laarveld B. Pathophysiology and pathological remodelling associated with dilated cardiomyopathy in broiler chickens predisposed to heart pump failure. Avian Pathol 2020; 49:428-439. [PMID: 32301624 DOI: 10.1080/03079457.2020.1757620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Broiler chickens selected for rapid growth are highly susceptible to dilated cardiomyopathy (DCM). In order to elucidate the pathophysiology of DCM, the present study examines the fundamental features of pathological remodelling associated with DCM in broiler chickens using light microscopy, transmission electron microscopy (TEM), and synchrotron Fourier Transform Infrared (FTIR) micro-spectroscopy. The morphological features and FTIR spectra of the left ventricular myocardium were compared among broiler chickens affected by DCM with clinical signs of heart pump failure, apparently normal fast-growing broiler chickens showing signs of subclinical DCM (high risk of heart failure), slow-growing broiler chickens (low risk of heart failure) and Leghorn chickens (resistant to heart failure, used here as physiological reference). The findings indicate that DCM and heart pump failure in fast-growing broiler chickens are a result of a complex metabolic syndrome involving multiple catabolic pathways. Our data indicate that a good deal of DCM pathophysiology in chickens selected for rapid growth is associated with conformational changes of cardiac proteins, and pathological changes indicative of accumulation of misfolded and aggregated proteins in the affected cardiomyocytes. From TEM image analysis it is evident that the affected cardiomyocytes demonstrate significant difficulty in the disposal of damaged proteins and maintenance of proteostasis, which leads to pathological remodelling of the heart and contractile dysfunction. It appears that the underlying causes of accumulation of damaged proteins are associated with dysregulated auto phagosome and proteasome systems, which, in susceptible individuals, create a milieu conducive for the development of DCM and heart failure. RESEARCH HIGHLIGHTS The light and electron microscopy image analyses revealed degenerative changes and protein aggregates in the cardiomyocytes of chickens affected by DCM. The analyses of FTIR spectra of the myocardium revealed that DCM and heart pump failure in broiler chickens are associated with conformational changes of myocardial proteins. The morphological changes in cardiomyocytes and conformational changes in myocardial proteins architecture are integral constituents of pathophysiology of DCM in fast-growing broiler chickens.
Collapse
Affiliation(s)
- A A Olkowski
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - C Wojnarowicz
- Prairie Diagnostic Services, Veterinary Pathology, University of Saskatchewan, Saskatoon, Canada
| | - B Laarveld
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|