1
|
Rocha-Méndez A, Prieto-Torres DA, Sánchez-González LA, Navarro-Sigüenza AG. Climatic niche shifts and ecological sky-island dynamics in Mesoamerican montane birds. Ecol Evol 2024; 14:e70236. [PMID: 39238570 PMCID: PMC11374531 DOI: 10.1002/ece3.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
An ongoing challenge in evolutionary and ecological research focuses on testing biogeographic hypotheses for the understanding of both species' distributional patterns and of the factors influencing range limits. In this study, we described the climatic niches of Neotropical humid montane forest birds through the analysis of factors driving their evolution at inter- and intraspecific levels; and tested for differences among allopatric lineages within Aulacorhynchus, Chlorospingus, Cardellina, and Eupherusa. We employed ecological niche models (ENMs) along with an ordination approach with kernel smoothing to perform niche overlap analyses and test hypotheses of niche equivalence/similarity among lineages. In addition, we described the potential distributions of each lineage during the Late Pleistocene climate fluctuations, identifying historical range expansions, connectivity, and stability. Overall, we observed differences in environmental variables influencing climatic requirements and distributional patterns for our selected species. We detected the highest values of niche overlap mainly between Eupherusa and some Chlorospingus lineages. At both interspecific and intraspecific levels, sister lineages showed non-identical environmental niches. Our results offer weak support to a moist forest model, in which populations followed the expansion and contraction cycles of montane forests, leading to a lack of niche conservatism among lineages (they tend to occupy not identical climatic environments) throughout Mesoamerica. Therefore, historical climatic conditions may act as ecological barriers determining the distributional ranges of these species.
Collapse
Affiliation(s)
- Alberto Rocha-Méndez
- Museo de Zoología, Facultad de Ciencias Universidad Nacional Autónoma de México Mexico City Mexico
- Posgrado en Ciencias Biológicas Universidad Nacional Autónoma de México Mexico City Mexico
- Present address: Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Faculty of Mathematics and Natural Sciences University of Potsdam Potsdam Germany
| | - David A Prieto-Torres
- Laboratorio de Biodiversidad y Cambio Global (LABIOCG), Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México Tlalnepantla Estado de México Mexico
| | - Luis A Sánchez-González
- Museo de Zoología, Facultad de Ciencias Universidad Nacional Autónoma de México Mexico City Mexico
| | - Adolfo G Navarro-Sigüenza
- Museo de Zoología, Facultad de Ciencias Universidad Nacional Autónoma de México Mexico City Mexico
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Campus Juriquilla Universidad Nacional Autónoma de México Querétaro Mexico
| |
Collapse
|
2
|
Kadej M, Zając K, Gutowski JM, Jaworski T, Plewa R, Ruta R, Sikora K, Smolis A, Magoga G, Montagna M, Eckelt A, Birkemoe T, Bonacci T, Brandmayr P, Heibl C, Cizek L, Algis Davenis S, Fuchs L, Horak J, Kapla A, Kulijer D, Merkl O, Müller J, Noordijk J, Saluk S, Sverdrup-Thygeson A, Vrezec A, Kajtoch Ł. Disentangling phylogenetic relations and biogeographic history within the Cucujus haematodes species group (Coleoptera: Cucujidae). Mol Phylogenet Evol 2022; 173:107527. [DOI: 10.1016/j.ympev.2022.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022]
|
3
|
Kajtoch Ł, Gronowska M, Plewa R, Kadej M, Smolis A, Jaworski T, Gutowski JM. A review of saproxylic beetle intra- and interspecific genetics: current state of the knowledge and perspectives. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2048717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ł. Kajtoch
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - M. Gronowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - R. Plewa
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - M. Kadej
- Department of Invertebrate Biology, Evolution and Conservation, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - A. Smolis
- Department of Invertebrate Biology, Evolution and Conservation, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - T. Jaworski
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - J. M. Gutowski
- Department of Natural Forests, Forest Research Institute, Białowieża, Poland
| |
Collapse
|
4
|
Jansen van Rensburg A, Robin M, Phillips B, Van Buskirk J. European common frog ( Rana temporaria) recolonized Switzerland from multiple glacial refugia in northern Italy via trans- and circum-Alpine routes. Ecol Evol 2021; 11:15984-15994. [PMID: 34824805 PMCID: PMC8601898 DOI: 10.1002/ece3.8268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
The high mountain ranges of Western Europe had a profound effect on the biotic recolonization of Europe from glacial refugia. The Alps present a particularly interesting case because they form an absolute barrier to dispersal for most taxa, obstructing recolonization from multiple refugia in northern Italy. Here, we investigate the effect of the European Alps on the phylogeographic history of the European common frog Rana temporaria. Based on partial cytochrome b and COXI sequences from Switzerland, we find two mitochondrial lineages roughly north and south of the Alpine ridge, with contact zones between them in eastern and western Switzerland. The northern haplogroup falls within the previously identified Western European haplogroup, while the southern haplogroup is unique to Switzerland. We find that the lineages diverged ~110 kya, at approximately the onset of the last glacial glaciation; this indicates that they are from different glacial refugia. Phylogenetic analyses suggest that the northern and southern haplogroups colonized Switzerland via trans- and circum-Alpine routes from at least two separate refugia in northern Italy. Our results illustrate how a complex recolonization history of the central European Alps can arise from the semi-permeable barrier created by high mountains.
Collapse
Affiliation(s)
- Alexandra Jansen van Rensburg
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Centre for Biodiversity and Environmental ResearchUniversity College LondonLondonUK
| | - Mathieu Robin
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Barret Phillips
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Josh Van Buskirk
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Amiri N, Vaissi S, Aghamir F, Saberi‐Pirooz R, Rödder D, Ebrahimi E, Ahmadzadeh F. Tracking climate change in the spatial distribution pattern and the phylogeographic structure of Hyrcanian wood frog,
Rana pseudodalmatina
(Anura: Ranidae). J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Negar Amiri
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Somaye Vaissi
- Department of Biology Faculty of Science Razi University Kermanshah Iran
| | - Fateme Aghamir
- Department of Agroecology Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Reihaneh Saberi‐Pirooz
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Dennis Rödder
- Herpetology Section Zoologisches Forschungsmuseum Alexander Koenig (ZFMK) Bonn Germany
| | - Elham Ebrahimi
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Faraham Ahmadzadeh
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| |
Collapse
|
6
|
Pârâu LG, Wink M. Common patterns in the molecular phylogeography of western palearctic birds: a comprehensive review. JOURNAL OF ORNITHOLOGY 2021; 162:937-959. [PMID: 34007780 PMCID: PMC8118378 DOI: 10.1007/s10336-021-01893-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
A plethora of studies have offered crucial insights in the phylogeographic status of Western Palearctic bird species. However, an overview integrating all this information and analyzing the combined results is still missing. In this study, we compiled all published peer-reviewed and grey literature available on the phylogeography of Western Palearctic bird species. Our literature review indicates a total number of 198 studies, with the overwhelming majority published as journal articles (n = 186). In total, these literature items offer information on 145 bird species. 85 of these species are characterized by low genetic differentiation, 46 species indicate genetic variation but no geographic structuring i.e. panmixia, while 14 species show geographically distinct lineages and haplotypes. Majority of bird species inhabiting the Western Palearctic display genetic admixture. The glaciation cycles in the past few million years were pivotal factors in shaping this situation: during warm periods many species expanded their distribution range to the north over wide areas of Eurasia; whereas, during ice ages most areas were no longer suitable and species retreated to refugia, where lineages mixed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10336-021-01893-x.
Collapse
Affiliation(s)
- Liviu G. Pârâu
- Institute of Pharmacy and Molecular Biotechnology, Department Biology, Heidelberg University, Im Neuenheimer Feld 364, 4 OG, Heidelberg, Germany
- Present Address: SARS-CoV-2 Data Evaluation Office, Eurofins Genomics Europe Applied Genomics GmbH, Anzinger Straße 7a, 85560 Ebersberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Department Biology, Heidelberg University, Im Neuenheimer Feld 364, 4 OG, Heidelberg, Germany
| |
Collapse
|
7
|
Cox K, McKeown N, Vanden Broeck A, Van Breusegem A, Cammaerts R, Thomaes A. Genetic structure of recently fragmented suburban populations of European stag beetle. Ecol Evol 2020; 10:12290-12306. [PMID: 33209288 PMCID: PMC7663065 DOI: 10.1002/ece3.6858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022] Open
Abstract
Habitat loss and fragmentation due to urbanization can negatively affect metapopulation persistence when gene flow among populations is reduced and population sizes decrease. Inference of patterns and processes of population connectivity derived from spatial genetic analysis has proven invaluable for conservation and management. However, a more complete account of population dynamics may be obtained by combining spatial and temporal sampling. We, therefore, performed a genetic study on European stag beetle (Lucanus cervus L.) populations in a suburban context using samples collected in three locations and during the period 2002-2016. The sampling area has seen recent landscape changes which resulted in population declines. Through the use of a suite of F ST, clustering analysis, individual assignment, and relatedness analysis, we assessed fine scale spatiotemporal genetic variation within and among habitat patches using 283 individuals successfully genotyped at 17 microsatellites. Our findings suggested the three locations to hold demographically independent populations, at least over time scales of relevance to conservation, though with higher levels of gene flow in the past. Contrary to expectation from tagging studies, dispersal appeared to be mainly female-biased. Although the life cycle of stag beetle suggests its generations to be discrete, no clear temporal structure was identified, which could be attributed to the varying duration of larval development. Since population bottlenecks were detected and estimates of effective number of breeders were low, conservation actions are eminent which should include the establishment of suitable dead wood for oviposition on both local and regional scales to increase (re)colonization success and connectivity among current populations.
Collapse
Affiliation(s)
- Karen Cox
- Research Institute for Nature and Forest (INBO)GeraardsbergenBelgium
| | - Niall McKeown
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - An Vanden Broeck
- Research Institute for Nature and Forest (INBO)GeraardsbergenBelgium
| | - An Van Breusegem
- Research Institute for Nature and Forest (INBO)GeraardsbergenBelgium
| | - Roger Cammaerts
- Retired from the Natural and Agricultural Environment Studies Department (DEMNA)Public Service of WalloniaGemblouxBelgium
| | - Arno Thomaes
- Research Institute for Nature and Forest (INBO)BrusselsBelgium
| |
Collapse
|
8
|
Orłowski G, Mróz L, Kadej M, Smolis A, Tarnawski D, Karg J, Campanaro A, Bardiani M, Harvey DJ, Méndez M, Thomaes A, Vrezec A, Ziomek K, Rudecki AL, Mader D. Supporting dataset and methods for body sizes and concentrations of chemical elements measured in elytra and abdomens of Stag Beetles Lucanus cervus. Data Brief 2020; 31:105935. [PMID: 32671146 PMCID: PMC7347950 DOI: 10.1016/j.dib.2020.105935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 10/27/2022] Open
Abstract
The dataset presented in this data paper supports "Breaking down insect stoichiometry into chitin-based and internal elemental traits: Patterns and correlates of continent-wide intraspecific variation in the largest European saproxylic beetle" (Orłowski et al. 2020). Here we present the supplementary data and description of methods on the following: (1) mass of elytra and abdomens across 28 local Stag Beetle Lucanus cervus populations in Europe. (2) Population origin and coverage of six major land-cover types, including transport infrastructure, measured in three radii (500 m, 1000 m and 5000 m) around the sampling sites of these populations. (3) The relationship between the mass and concentrations of elements measured in abdomens and elytra in 28 Stag Beetle populations and major land-cover types around the sampling sites.
Collapse
Affiliation(s)
- Grzegorz Orłowski
- Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, PL-60-809 Poznań, Poland
| | - Lucyna Mróz
- Department of Ecology, Biogeochemistry and Environmental Protection, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, PL-50-328 Wrocław, Poland
| | - Marcin Kadej
- Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology, Faculty of Biological Science, University of Wrocław, Przybyszewskiego 65, PL-51-148 Wrocław, Poland
| | - Adrian Smolis
- Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology, Faculty of Biological Science, University of Wrocław, Przybyszewskiego 65, PL-51-148 Wrocław, Poland
| | - Dariusz Tarnawski
- Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology, Faculty of Biological Science, University of Wrocław, Przybyszewskiego 65, PL-51-148 Wrocław, Poland
| | - Jerzy Karg
- Faculty of Biological Sciences, Department of Nature Conservation, University of Zielona Góra, , Prof. Z. Szafrana 1, PL-65-516 Zielona Góra, Zielona Góra, Poland
| | - Alessandro Campanaro
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca Difesa e Certificazione, Firenze, Italy
| | - Marco Bardiani
- Reparto Carabinieri Biodiversità di Verona, Centro Nazionale Carabinieri Biodiversità "Bosco Fontana", Mantova, Italy
| | - Deborah J Harvey
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Marcos Méndez
- Área de Biodiversidad y Conservacion, Universidad Rey Juan Carlos, Mostoles (Madrid), Spain
| | - Arno Thomaes
- Research Institute for Nature and Forest (INBO), Brussel, Belgium
| | - Al Vrezec
- National Institute of Biology, Ljubljana, Slovenia
| | - Krzysztof Ziomek
- Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, PL-60-809 Poznań, Poland
| | - Andrzej L Rudecki
- Department of Ecology, Biogeochemistry and Environmental Protection, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, PL-50-328 Wrocław, Poland
| | | |
Collapse
|