1
|
Noyan S, Dedeoğlu BG. Upregulation of miR-99b-5p Modulates ESR1 Expression as an Adaptive Mechanism to Circumvent Drug Response via Facilitating ER/HER2 Crosstalk. Balkan Med J 2025; 42:150-156. [PMID: 40033677 PMCID: PMC11881538 DOI: 10.4274/balkanmedj.galenos.2025.2024-12-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Background Endocrine resistance remains a significant therapeutic challenge in estrogen receptor-positive (ER+) breast cancer, the most common subtype, contributing to increased morbidity and mortality. The interaction between ER and HER family receptors, particularly HER2 and epidermal growth factor receptor (EGFR), drives resistance to standard therapies such as tamoxifen and trastuzumab by activating key signaling pathways, including PI3K/AKT and RAS/MAPK. Dysregulated miRNAs, which are non-coding gene expression regulators, have been linked to therapy response. Aims To investigate the role of miR-99b-5p in ER-HER2/EGFR crosstalk in BT-474 cells. Study Design Experimental study. Methods The expression profile and prognostic significance of miR- 99b-5p in breast cancer were analyzed using The Cancer Genome Atlas (TCGA) database. BT-474 cells were transfected with miR-99b-5p mimics and inhibitors, followed by treatment with tamoxifen and trastuzumab to assess their impact on cell proliferation and ER-HER2/EGFR crosstalk. Western blotting was performed to quantify EGFR, HER2, and ESR1 protein levels. Real-time proliferation analysis evaluated changes in cell growth following miRNA transfection and drug treatment. Results The study revealed that miR-99b-5p is significantly overexpressed in tumors compared to normal tissues and is associated with poor patient survival and enhanced ER signaling. Transfection with miR-99b-5p mimics increased ESR1 expression and cell proliferation, even in the presence of tamoxifen or trastuzumab, indicating that miR-99b-5p contributes to therapy resistance through receptor crosstalk. Conversely, miR-99b-5p inhibition significantly restored drug sensitivity, reducing proliferation and enhancing the effectiveness of tamoxifen and trastuzumab. Conclusion These findings establish miR-99b-5p as a key regulator of endocrine and HER2-targeted therapy resistance. Targeting miR-99b-5p could represent a potential therapeutic strategy to improve treatment outcomes in ER+/HER2+ breast cancer. Further research is needed to clarify the underlying molecular mechanisms and validate the therapeutic potential of miR-99b-5p inhibition in clinical applications.
Collapse
Affiliation(s)
- Senem Noyan
- Biotechnology Institute Ankara University, Ankara, Türkiye
| | | |
Collapse
|
2
|
Khan MS, Wong GL, Zhuang C, Najjar MK, Lo HW. Crosstalk between breast cancer-derived microRNAs and brain microenvironmental cells in breast cancer brain metastasis. Front Oncol 2024; 14:1436942. [PMID: 39175471 PMCID: PMC11338853 DOI: 10.3389/fonc.2024.1436942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
Breast cancer is the most frequent malignancy in women, constituting 15.2% of all new cancers diagnosed in the United States. Distant breast cancer metastasis accounts for the majority of breast cancer-related deaths; brain metastasis is the third most common site for metastatic breast cancer but is associated with worst prognosis of approximately eight months of survival. Current treatment options for breast cancer brain metastasis (BCBM) are limited and ineffective. To help identify new and effective therapies for BCBM, it is important to investigate the mechanisms by which breast cancer cells metastasize to the brain and thrive in the brain microenvironment. To this end, studies have reported that primary breast tumor cells can prime brain microenvironmental cells, including, astrocytes and microglia, to promote the formation of BCBM through the release of extracellular vesicle-microRNAs (miRNAs). Breast tumor-derived miRNAs can also promote breast cancer cell invasion through the blood-brain barrier by disrupting the integrity of the brain microvascular endothelial cells. In this review, we summarize current literature on breast cancer-derived BCBM-promoting miRNAs, cover their roles in the complex steps of BCBM particularly their interactions with microenvironmental cells within the brain metastatic niche, and finally discuss their therapeutic applications in the management of BCBM.
Collapse
Affiliation(s)
- Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Grace L. Wong
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
3
|
Kavishahi NN, Rezaee A, Jalalian S. The Impact of miRNAs on the Efficacy of Tamoxifen in Breast Cancer Treatment: A Systematic Review. Clin Breast Cancer 2024; 24:341-350. [PMID: 38413339 DOI: 10.1016/j.clbc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Seventy percent of breast cancer patients have an active estrogen receptor. Tamoxifen interferes with estrogen's ability to bind to cancer cells. The most challenging aspect of tamoxifen, however, is that breast cancer cells become resistant to its effects. Some studies have shown that alterations in miRNA expression contribute significantly to drug resistance in breast cancer. Therefore, the present systematic review aims to investigate miRNAs that significantly influence the response to tamoxifen treatment. The present study follows the PRISMA instructions. The Web of Science, PubMed, and Scopus databases were searched to retrieve English articles. The searches were conducted up to September 11, 2022. The search strategy included the terms "Tamoxifen", "Breast Neoplasm", and "MicroRNA". The inclusion criteria of this study are English, original, and experimental studies investigating miRNAs that are effective in the treatment efficacy of tamoxifen. A total of 565 articles were retrieved. After screening, 75 studies met our inclusion criteria. This systematic review study examined 105 miRNAs, of which 44 have a positive effect, and 47 miRNAs inhibit tamoxifen function. Fourteen miRNAs have a controversial effect, ie, some studies show positive and negative effects. The study of miRNAs affecting tamoxifen function in breast cancer patients may facilitate the identification of individuals at higher risk of disease recurrence. Conversely, it can potentially utilize appropriate interventions to defeat drug resistance effectively.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Jalalian
- Medical Doctor Student, Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
4
|
Vo TH, EL-Sherbieny Abdelaal E, Jordan E, O'Donovan O, McNeela EA, Mehta JP, Rani S. miRNAs as biomarkers of therapeutic response to HER2-targeted treatment in breast cancer: A systematic review. Biochem Biophys Rep 2024; 37:101588. [PMID: 38088952 PMCID: PMC10711031 DOI: 10.1016/j.bbrep.2023.101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is the most common type of lethal cancer in women globally. Women have a 1 in 8 chance of developing breast cancer in their lifetime. Among the four primary molecular subtypes (luminal A, luminal B, HER2+, and triple-negative), HER2+ accounts for 20-25 % of all breast cancer and is rather aggressive. Although the treatment outcome of HER2+ breast cancer patients has been significantly improved with anti-HER2 agents, primary and acquired drug resistance present substantial clinical issues, limiting the benefits of HER2-targeted treatment. MicroRNAs (miRNAs) play a central role in regulating acquired drug resistance. miRNA are single-stranded, non-coding RNAs of around 20-25 nucleotides, known for essential roles in regulating gene expression at the post-transcriptional level. Increasing evidence has demonstrated that miRNA-mediated alteration of gene expression is associated with tumorigenesis, metastasis, and tumor response to treatment. Comprehensive knowledge of miRNAs as potential markers of drug response can help provide valuable guidance for treatment prognosis and personalized medicine for breast cancer patients.
Collapse
Affiliation(s)
- Thanh Hoa Vo
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | | | - Emmet Jordan
- Department of Oncology, University Hospital Waterford, Dunmore Road, X91 ER8E, Waterford, Ireland
| | - Orla O'Donovan
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Edel A. McNeela
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Jai Prakash Mehta
- Department of Applied Science, South East Technological University, Kilkenny Road, R93 V960, Carlow, Ireland
| | - Sweta Rani
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| |
Collapse
|
5
|
Liu L, Zou C, Lv X, Wei H, Wu S, Song J, Tang Z, Luo H, Li X, Ai Y. SP2-induced circPUM1 modulates chemoresistance and nature killer cell toxicity in oral squamous cell carcinoma. J Cell Mol Med 2024; 28:e17888. [PMID: 37556099 PMCID: PMC10902577 DOI: 10.1111/jcmm.17888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a type of tumour found in the cavity that is characterized by differentiation and metastasis to the lymph nodes. Although diagnosis strategy and clinical treatment have recently improved, the outcomes for OSCC patients remain unsatisfactory. This study verified the characteristics of circPUM1 in OSCC cells, subsequently generating dysregulated circPUM1 cell models, showing that circPUM1 promoted chemoresistance and natural killer (NK) cell toxicity. Furthermore, the transcription factor SP2 regulated the expression of circPUM1 in OSCC cells, circPUM1 acted as a molecular sponge for miR-770-5p. Moreover, Nucleosome Assembly Protein 1 Like 1 (NAP1L1) is a downstream target for miR-770-5p and essential for circPUM1-mediated cisplatin resistance and NK cell cytotoxicity in OSCC cells. The network composed of SP2, circPUM1, miR-770-5p and NAP1L1 in OSCC appears to be a promising avenue for the development of novel targets for diagnosing or treating OSCC.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mouth Neoplasms/pathology
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Drug Resistance, Neoplasm/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Cell Line, Tumor
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Gene Expression Regulation, Neoplastic/drug effects
- Cisplatin/pharmacology
- RNA, Circular/genetics
- RNA, Circular/metabolism
Collapse
Affiliation(s)
- Lian Liu
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Chen Zou
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Xiaozhi Lv
- Department of Oral and Maxillofacial Surgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Haigang Wei
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Siyuan Wu
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Jing Song
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Zhe Tang
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Hailing Luo
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Xia Li
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| | - Yilong Ai
- Foshan Stomatological Hospital, School of MedicineFoshan UniversityFoshanChina
| |
Collapse
|
6
|
NOYAN S, GÜR DEDEOĞLU B. miR-770-5p-induced cellular switch to sensitize trastuzumab resistant breast cancer cells targeting HER2/EGFR/IGF1R bidirectional crosstalk. Turk J Biol 2024; 48:153-162. [PMID: 39051060 PMCID: PMC11265924 DOI: 10.55730/1300-0152.2690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/26/2024] [Accepted: 02/05/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim Studies highlighted the bidirectional crosstalk between the HER family members in breast cancer as resistance mechanism to anti-HER agents. Cross-signaling between HER2/EGFR and ER/IGF1R could play role in the development of resistance to therapeutics hence stimulating cell growth. To overcome this resistance, combined therapies targeting both pathways simultaneously have been proposed as an effective strategy. The involvement of miRNAs in resistance of targeted therapies like trastuzumab was demonstrated in recent studies. Hence the regulation of miRNAs in resistance state could reverse the cell behaviour to drugs. Previously we found that overexpression of miR-770-5p downregulated AKT and ERK expression through HER2 signaling and potentiated the effect of trastuzumab. In this study we examined the impact of miR-770-5p on trastuzumab resistance. Materials and methods Cells were treated with tamoxifen or trastuzumab to examine their role in bidirectional crosstalk. The molecule mechanism of miR-770-5p on HER2/EGFR/IGF1R bidirectional crosstalk was explored by western blot. The expression of miR-770-5p in trastuzumab resistant cells was examined by q-PCR. To investigate the effect of miR-770-5p on cancer cell proliferation in trastuzumab resistance state, resistant cells were analyzed by iCELLigence real-time cell analyzer. Results miR-770-5p expression was significantly downregulated in trastuzumab-resistant BT-474 and SK-BR-3 cells. Overexpression of miR-770-5p sensitized the resistant cells to trastuzumab, as evidenced by reduced cell proliferation and increased cell viability. Additionally, in resistant cells, increased expression and activation of EGFR and IGF1R were observed. However, miR-770-5p overexpression resulted in decreased phosphorylation of AKT and ERK, indicating its suppressive role in EGFR/HER2 signaling. Furthermore, miR-770-5p downregulated the expression of IGF1R and mTOR, suggesting its involvement in regulating the escape signaling mediated by IGF1R in resistance. Conclusion In conclusion, our findings demonstrate the critical role of miR-770-5p in regulating bidirectional crosstalk and overcoming trastuzumab resistance in breast cancer cells. These results highlight the potential of miR-770-5p as a therapeutic target to improve the efficacy of targeted therapies and address resistance mechanisms in breast cancer.
Collapse
Affiliation(s)
- Senem NOYAN
- Biotechnology Institute, Ankara University, Ankara,
Turkiye
| | | |
Collapse
|
7
|
Hussen BM, Abdullah KH, Abdullah SR, Majeed NM, Mohamadtahr S, Rasul MF, Dong P, Taheri M, Samsami M. New insights of miRNA molecular mechanisms in breast cancer brain metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:645-660. [PMID: 37818447 PMCID: PMC10560790 DOI: 10.1016/j.ncrna.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
Brain metastases in breast cancer (BC) patients are often associated with a poor prognosis. Recent studies have uncovered the critical roles of miRNAs in the initiation and progression of BC brain metastasis, highlighting the disease's underlying molecular pathways. miRNA-181c, miRNA-10b, and miRNA-21, for example, are all overexpressed in BC patients. It has been shown that these three miRNAs help tumors grow and metastasize by targeting genes that control how cells work. On the other hand, miRNA-26b5p, miRNA-7, and miRNA-1013p are all downregulated in BC brain metastasis patients. They act as tumor suppressors by controlling the expression of genes related to cell adhesion, angiogenesis, and invasion. Therapeutic miRNA targeting has considerable promise in treating BC brain metastases. Several strategies have been proposed to modulate miRNA expression, including miRNA-Mimics, antagomirs, and small molecule inhibitors of miRNA biogenesis. This review discusses the aberrant expression of miRNAs and metastatic pathways that lead to the spread of BC cells to the brain. It also explores miRNA therapeutic target molecular mechanisms and BC brain metastasis challenges with advanced strategies. The targeting of certain miRNAs opens a new door for the development of novel therapeutic approaches for this devastating disease.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Khozga Hazhar Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | | | - Sayran Mohamadtahr
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Khalilian S, Hosseini Imani SZ, Hosseini SA, Ghafouri-Fard S. The important role of miR-770 as a novel potential diagnostic and therapeutic target for human cancer and other diseases. Pathol Res Pract 2023; 248:154586. [PMID: 37267769 DOI: 10.1016/j.prp.2023.154586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
MicroRNA-770 (miR-770) is an RNA gene, located on chromosome 14q32.2. It has important effects on the pathobiology of cancers and other human diseases. It is known to be a tumor suppressor in breast cancer, ovarian cancer, gastric cancer, non-small cell lung cancer, prostate cancer, and glioblastoma. In colorectal adenocarcinoma and oral squamous cell carcinoma, miR-770 is regarded as an oncogenic miRNA. In several disorders, miR-770 dysregulation has been recognized as a potential biomarker for disease diagnosis and prognosis. Dysregulation of miR-770 has also been demonstrated in non-malignant human disorders, including Alzheimer's disease, dilated cardiomyopathy, diabetic nephropathy, Hirschsprung's disease, osteoarthritis, silicosis, and type 2 diabetes mellitus. In the current review, we have obtained the miR-770 target genes, ontology, and related pathways. We have also provided a comprehensive review of miR-770 in both malignant and non-malignant disorders and explained its possible therapeutic implications.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Hosseini Imani
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN Office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wang X, Zhang J, Xiu C, Yang J, Liu Y, Lei Y. Whole-transcriptome sequencing analysis reveal mechanisms of Yiqi Huoxue Yangyin (YHY) decoction in ameliorating D-gal-induced cardiac aging. Aging (Albany NY) 2023; 15:2906-2919. [PMID: 37071017 DOI: 10.18632/aging.204532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/03/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Aging is a major factor for cardiovascular disease, and cardiac aging is closely related to the incidence of cardiovascular disease. Clarifying the mechanism of cardiac aging and finding reliable intervention is critical for preventing cardiovascular diseases and achieving healthy longevity. Traditional Chinese medicine Yiqi Huoxue Yangyin (YHY) decoction has unique advantage in the treatment of cardiovascular disease and aging. However, the associated molecular mechanisms remain unknown. PURPOSE The present study aimed to verify the efficacy of YHY decoction against cardiac aging in D-gal-induced mouse model, and explore the potential mechanism of YHY decoction treatment through whole-transcriptome sequencing technique, providing novel insights into the molecular basis of YHY decoction in treating cardiac aging. METHODS The component of YHY decoction was identified by High Performance Liquid Chromatography (HPLC). D-gal-induced aging mouse model was established for this study. HE and Masson staining were applied to determine pathological changes of heart; telomere length, telomerase activity, AGEs and p53 were used to evaluate the degree of heart aging. Transcriptome sequencing, GO, KEGG, GSEA and ceRNA network were applied to analyze the potential mechanism of YHY decoction treatment of cardiac aging. RESULTS In this study, we found that YHY decoction not only improved the pathological structure of aging heart, but also regulated the expression of aging-related markers, telomere length, telomerase activity, AGEs and p53, the myocardial tissue, suggesting that it has a specific effect in delaying cardiac aging. Whole-transcriptome sequencing showed that the total of 433 mRNAs, 284 lncRNAs, 62 miRNAs, and 39 circRNAs were significantly differentially expressed after YHY decoction treatment. According to the analysis results of KEGG and GSEA, the differentially expressed mRNAs were found significantly involved in immune system, cytokine-cytokine receptor interaction and cell adhesion molecules. The ceRNA network showed that miR-770, miR-324, and miR-365 are localized in center, mainly affecting the immune system, PI3K-Akt signaling pathway, and MAPK signaling pathway. CONCLUSION In conclusion, our results evaluated the ceRNA network of YHY decoction in treating cardiac aging for the first time, which could provide better understanding of the potential mechanism of YHY decoction treatment of cardiac aging.
Collapse
Affiliation(s)
- Xue Wang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiaqi Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengkui Xiu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Yang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yiqing Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Lei
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
10
|
Ismail A, El-Mahdy HA, Abulsoud AI, Sallam AAM, Eldeib MG, Elsakka EG, Zaki MB, Doghish AS. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. Int J Biol Macromol 2022; 224:1541-1565. [DOI: 10.1016/j.ijbiomac.2022.10.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
11
|
He W, Yang G, Liu S, Maghsoudloo M, Shasaltaneh MD, Kaboli PJ, Zhang C, Zhang J, Entezari M, Imani S, Wen Q. Comparative mRNA/micro-RNA co-expression network drives melanomagenesis by promoting epithelial-mesenchymal transition and vasculogenic mimicry signaling. Transl Oncol 2021; 14:101237. [PMID: 34626953 PMCID: PMC8512639 DOI: 10.1016/j.tranon.2021.101237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to identify a novel disease-associated differentially co-expressed mRNA-microRNA (miRNA) that is associated with vasculogenic mimicry (VM) and epithelial-to-mesenchymal transition (EMT) network at different stages of melanoma. By applying weighted gene co-expression network analysis, we constructed a VM+EMT biological network with the available microarray dataset downloaded from a public database. Quantitative real-time PCR, immunohistochemical staining, and CD31-periodic acid solution dual staining were performed to confirm the expression of genes associated with EMT and VM formation in subjects with malignant melanoma (n = 18) and primary melanoma (n = 13) and in healthy subjects (n = 10). Our findings suggested that phosphatidylserine-specific phospholipase A1-alpha (PLA1A) and dermokine (DMKN) genes function as oncogenes that trigger VM and EMT processes during melanomagenesis on interaction with miR-370, miR-563, and miR-770-5p. PLA1A and DMKN genes can be considered potential VM+EMT network-based diagnostic biomarkers for distinguishing between melanoma patients. We postulate that a network with altered PLA1A/miR-563 and DMNK/miR-770-5p/miR-370 may contribute to melanomagenesis by triggering the EMT signaling pathway and VM formation. This study provides a potentially valuable approach for the early diagnosis and prognosis of melanoma progression.
Collapse
Affiliation(s)
- WenFeng He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Oncology, Anyue Hospital of Traditional Chinese Medicine, Second Ziyang Hospital of Traditional Chinese Medicine, Ziyang, Sichuan, China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Oncology, Chengdu Jinniu District People's Hospital, Chengdu, Sichuan, China
| | - Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Cuiwei Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - JingHeng Zhang
- Oncology Department, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
12
|
Isca C, Piacentini F, Mastrolia I, Masciale V, Caggia F, Toss A, Piombino C, Moscetti L, Barbolini M, Maur M, Dominici M, Omarini C. Circulating and Intracellular miRNAs as Prognostic and Predictive Factors in HER2-Positive Early Breast Cancer Treated with Neoadjuvant Chemotherapy: A Review of the Literature. Cancers (Basel) 2021; 13:cancers13194894. [PMID: 34638377 PMCID: PMC8508299 DOI: 10.3390/cancers13194894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that can act as both oncogene and tumor suppressors. Deregulated miRNA expression has been detected in human cancers, including breast cancer (BC). Considering their important roles in tumorigenesis, miRNAs have been investigated as potential prognostic and diagnostic biomarkers. Neoadjuvant setting is an optimal model to investigate in vivo the mechanism of treatment resistance. In the management of human epidermal growth factor receptor-2 (HER2)-positive early BC, the anti-HER2-targeted therapies have drastically changed the survival outcomes. Despite this, growing drug resistance due to the pressure of therapy is relatively frequent. In the present review, we focused on the main miRNAs involved in HER2-positive BC tumorigenesis and discussed the recent evidence on their predictive and prognostic value.
Collapse
Affiliation(s)
- Chrystel Isca
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Federico Piacentini
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (I.M.); (V.M.)
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (I.M.); (V.M.)
| | - Federica Caggia
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Angela Toss
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Claudia Piombino
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Luca Moscetti
- Division of Medical Oncology, Department of Oncology-Hematology, University Hospital of Modena, 41124 Modena, Italy; (L.M.); (M.M.)
| | - Monica Barbolini
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
| | - Michela Maur
- Division of Medical Oncology, Department of Oncology-Hematology, University Hospital of Modena, 41124 Modena, Italy; (L.M.); (M.M.)
| | - Massimo Dominici
- Division of Medical Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, 41124 Modena, Italy; (C.I.); (F.P.); (F.C.); (A.T.); (C.P.); (M.B.); (M.D.)
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (I.M.); (V.M.)
| | - Claudia Omarini
- Division of Medical Oncology, Department of Oncology-Hematology, University Hospital of Modena, 41124 Modena, Italy; (L.M.); (M.M.)
- Correspondence: ; Tel.: +39-059-4222845
| |
Collapse
|
13
|
Cumova A, Vymetalkova V, Opattova A, Bouskova V, Pardini B, Kopeckova K, Kozevnikovova R, Lickova K, Ambrus M, Vodickova L, Naccarati A, Soucek P, Vodicka P. Genetic variations in 3´UTRs of SMUG1 and NEIL2 genes modulate breast cancer risk, survival and therapy response. Mutagenesis 2021; 36:269-279. [PMID: 34097065 DOI: 10.1093/mutage/geab017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy in women accounting for approximately 2 million new cases worldwide annually. Several genetic, epigenetic and environmental factors are known to be involved in BC development and progression, including alterations in post-transcriptional gene regulation mediated by microRNAs (miRNAs). Single nucleotide polymorphisms (SNPs) located in miRNA binding sites (miRSNPs) in 3'-untranslated (UTR) regions of target genes may affect miRNA-binding affinity and consequently modulate gene expression. We have previously reported a significant association of miRSNPs in the SMUG1 and NEIL2 genes with overall survival in colorectal cancer patients. SMUG1 and NEIL2 are DNA glycosylases involved in base excision DNA repair (BER). Assuming that certain genetic traits are common for solid tumours, we have investigated wherever variations in SMUG1 and NEIL2 genes display an association with BC risk, prognosis, and therapy response in a group of 673 BC patients and 675 healthy female controls. Patients with TC genotype of NEIL2 rs6997097 and receiving only hormonal therapy displayed markedly shorter overall survival (OS) (HR=4.15, 95% CI=1.7-10.16, P= 0.002) and disease-free survival (DFS) (HR=2.56, 95% CI=1.5-5.7, P= 0.02). Our results suggest that regulation of base excision repair glycosylases operated by miRNAs may modulate the prognosis of hormonally treated BC.
Collapse
Affiliation(s)
- Andrea Cumova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alena Opattova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Bouskova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Barbara Pardini
- IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Katerina Lickova
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Miloslav Ambrus
- Radiotherapy and Oncology Department, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,IIGM Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
14
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
15
|
Noyan S, Andac Ozketen A, Gurdal H, Gur Dedeoglu B. miR-770-5p regulates EMT and invasion in TNBC cells by targeting DNMT3A. Cell Signal 2021; 83:109996. [PMID: 33798630 DOI: 10.1016/j.cellsig.2021.109996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are shown to regulate various processes in cancer like motility and invasion that are key features of the metastatic triple negative breast cancer (TNBCs). Epithelial-mesenchymal transition (EMT) is one of the well-defined cellular transitioning processes characterized with reduced E-cadherin expression and increased mesenchymal molecules such as Vimentin or Snail thereby gives the cells mobility and invasive character. Aberrant DNA methylation by DNA methyltransferases (DNMTs) plays an important role in carcinogenesis. It is well known that DNMTs are required for transcriptional silencing of tumor-associated genes. DNMT3A-induced promoter hypermethylation of E-cadherin has also been known to improve cancer metastasis. Our results indicated that miR-770-5p could downregulate Vimentin and Snail expression levels, while increasing or restoring the expression of E-Cadherin hence, leading to inhibition of EMT phenotypes along with motility and invasion. Specifically, we showed that overexpression of miR-770-5p restored the expression of E-Cadherin in MDA-MB-231 cells via directly targeting DNMT3A. We also observed the change in the spindled shapes showing the loss of mesenchymal characteristics and gain of epithelial phenotype in miR-770-5p overexpressing cells. When considered together, our results show that miR-770-5p could effectively inhibit invasion potential driven by EMT.
Collapse
Affiliation(s)
- Senem Noyan
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Ayşe Andac Ozketen
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Hakan Gurdal
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| | | |
Collapse
|
16
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
17
|
Hashemi A, Gorji-Bahri G. MicroRNA: Promising Roles in Cancer Therapy. Curr Pharm Biotechnol 2020; 21:1186-1203. [PMID: 32310047 DOI: 10.2174/1389201021666200420101613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that act as one of the main regulators of gene expression. They are involved in maintaining a proper balance of diverse processes, including differentiation, proliferation, and cell death in normal cells. Cancer biology can also be affected by these molecules by modulating the expression of oncogenes or tumor suppressor genes. Thus, miRNA based anticancer therapy is currently being developed either alone or in combination with chemotherapy agents used in cancer management, aiming at promoting tumor regression and increasing cure rate. Access to large quantities of RNA agents can facilitate RNA research and development. In addition to currently used in vitro methods, fermentation-based approaches have recently been developed, which can cost-effectively produce biological RNA agents with proper folding needed for the development of RNA-based therapeutics. Nevertheless, a major challenge in translating preclinical studies to clinical for miRNA-based cancer therapy is the efficient delivery of these agents to target cells. Targeting miRNAs/anti-miRNAs using antibodies and/or peptides can minimize cellular and systemic toxicity. Here, we provide a brief review of miRNA in the following aspects: biogenesis and mechanism of action of miRNAs, the role of miRNAs in cancer as tumor suppressors or oncogenes, the potential of using miRNAs as novel and promising therapeutics, miRNA-mediated chemo-sensitization, and currently utilized methods for the in vitro and in vivo production of RNA agents. Finally, an update on the viral and non-viral delivery systems is addressed.
Collapse
Affiliation(s)
- Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Chen B, Ji F, Wen X, Jin Z. Circular RNA circ_ASAP2 promotes cell viability, migration, and invasion of gastric cancer cells by regulating the miR-770-5p/CDK6 axis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2806-2819. [PMID: 33284890 PMCID: PMC7716128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common causes of cancer death. GSE83521 microarray analysis suggested that circular RNA circ_ASAP2 (hsa_circ_0008768) expression was increased in GC tissues. However, the molecular mechanism of circ_ASAP2 remains unknown. METHODS Expression levels of circ_ASAP2, microRNA-770-5p (miR-770-5p), and the cyclin-dependent kinase 6 (CDK6) were detected by using real time PCR (RT-PCR). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and transwell assays were applied to explore cell viability, migration, and invasion, respectively. The interactions between miR-770-5p and circ_ASAP2 or CDK6 was predicted by using Starbase software, and then confirmed by luciferase reporter assay. Xenograft tumor model was also used to estimate the effect of circ_ASAP2 on tumor growth in vivo. RESULTS The expression levels of circ_ASAP2 and CDK6 were increased, and miR-770-5p level was decreased in GC tissues and cells. Furthermore, circ_ASAP2 knockdown inhibited cell viability, migration, and invasion of GC cells. Mechanically, circ_ASAP2 functioned as a sponge of miR-770-5p to regulate CDK6 expression, thereby boosting the progression of GC cells. Circ_ASAP2 silencing hindered the tumor growth of GC in vivo. CONCLUSION Circ_ASAP2 knockdown can repress the development of GC cells partly through regulating the miR-770-5p/CDK6 axis, suggesting an underlying circRNA-targeted therapy for GC treatment.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumchi 830054, Xinjiang Uygur Autonomous Region, China
| | - Fei Ji
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical UniversityUrumchi 830054, Xinjiang Uygur Autonomous Region, China
| | - Xinian Wen
- Department of Gastroenterology, The Fifth Affiliated Hospital of Xinjiang Medical UniversityUrumchi 830054, Xinjiang Uygur Autonomous Region, China
| | - Zhong Jin
- Department of Cadre/VIP Surgery, The First Affiliated Hospital of Xinjiang Medical UniversityUrumchi 830054, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
19
|
miR-195 down-regulation is a distinctive biomarker of HER2 positive state in breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Li Z, Qin Y, Chen P, Luo Q, Shi H, Jiang X. miR‑135b‑5p enhances the sensitivity of HER‑2 positive breast cancer to trastuzumab via binding to cyclin D2. Int J Mol Med 2020; 46:1514-1524. [PMID: 32700749 PMCID: PMC7447305 DOI: 10.3892/ijmm.2020.4681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
Trastuzumab has led to a marked improvement in the outcomes of patients with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer. However, the effects of trastuzumab on HER-2-positive breast cancer are limited by the emergence of its cardiotoxicside effects. MicroRNA (miR)-135b-5p has been shown to inhibit tumor metastasis in breast cancer. The present study aimed to explore the effects of miR-135b-5p overexpression on the efficacy of trastuzumab in HER-2-positive breast cancer. Reverse transcription-quantitative PCR was performed to detect the levels of miR-135b-5p. Cell viability was evaluated with a Cell Counting Kit-8 assay. Annexin V/propidium iodide staining was employed to detect the number of apoptotic cells. Flow cytometry assay was performed to investigate the cell cycle. Western blotting was used to detect the expression levels of Bax, cleaved caspase-3, Bcl-2, cyclin D2, p27Kip1 and cyclin E1. Cell migration and invasion were detected by Transwell assay. Luciferase assays were conducted to identify the target gene of miR-135b-5p. In addition, an in vivo tumor xenograft model was established. miR-135b-5p agomir significantly enhanced the anti-proliferative effect of trastuzumab on HER-2-positive breast cancer cells via the induction of apoptosis, whereas the anti-metastatic effect of trastuzumab was enhanced by miR-135b-5p agomir treatment. Subsequently, luciferase assays indicated that cyclin D2 was the direct target of miR-135b-5p, whereas overexpression of the latter arrested cell cycleduring the G0/G1 phase. Moreover, miR-135b-5p agomir notably increased the antitumor effect of trastuzumab in vivo. The data demonstrated that miR-135b-5p sensitized HER-2-positive breast cancer cells to trastuzumab in vitro and in vivo by directly binding to cyclin D2. These results suggested that the combination of miR-135b-5p with trastuzumab may be a therapeutic strategy for patients with HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Zhilan Li
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yiyu Qin
- School of Clinical Medicine, Jiangsu Medical Vocational College, Yancheng, Jiangsu 224005, P.R. China
| | - Peihong Chen
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qiong Luo
- School of Clinical Medicine, Jiangsu Medical Vocational College, Yancheng, Jiangsu 224005, P.R. China
| | - Haiyan Shi
- School of Clinical Medicine, Jiangsu Medical Vocational College, Yancheng, Jiangsu 224005, P.R. China
| | - Xiudi Jiang
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
21
|
Kumar G, Nandakumar K, Mutalik S, Rao CM. Biologicals to direct nanotherapeutics towards HER2-positive breast cancers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 27:102197. [PMID: 32275958 DOI: 10.1016/j.nano.2020.102197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022]
Abstract
HER2-positive breast cancer, an aggressive cancer, is treated with combinations of conventional anticancer drugs viz., cytotoxic drugs, nibs, and mAbs. Major limitations associated with this therapy are patient non-compliance due to the adverse drug reactions and rapid development of resistance by the HER2-positive malignant cells. While the former is addressed by the nano-formulations of the anticancer-drugs to some extent, the latter is still at large. This is because the nanocarriers of the anticancer drugs, by and large, lack the target specificity and selectivity. Thus, nowadays, to overcome these problems, various safe and efficacious biological agents are being used to direct the nanotherapeutics towards the HER2-positive breast cancers. The present review describes the potentials of such biological agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
22
|
Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Mol Cancer 2020; 19:29. [PMID: 32059676 PMCID: PMC7023699 DOI: 10.1186/s12943-020-1140-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis (BM) predominantly occurs in triple-negative (TN) and epidermal growth factor 2 (HER2)-positive breast cancer (BC) patients, and currently, there is an unmet need for the treatment of these patients. BM is a complex process that is regulated by the formation of a metastatic niche. A better understanding of the brain metastatic processes and the crosstalk between cancer cells and brain microenvironment is essential for designing a novel therapeutic approach. In this context, the aberrant expression of miRNA has been shown to be associated with BM. These non-coding RNAs/miRNAs regulate metastasis through modulating the formation of a metastatic niche and metabolic reprogramming via regulation of their target genes. However, the role of miRNA in breast cancer brain metastasis (BCBM) is poorly explored. Thus, identification and understanding of miRNAs in the pathobiology of BCBM may identify a novel candidate miRNA for the early diagnosis and prevention of this devastating process. In this review, we focus on understanding the role of candidate miRNAs in the regulation of BC brain metastatic processes as well as designing novel miRNA-based therapeutic strategies for BCBM.
Collapse
Affiliation(s)
- Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
23
|
Gene Expression and miRNAs Profiling: Function and Regulation in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Breast Cancer. Cancers (Basel) 2019; 11:cancers11050646. [PMID: 31083383 PMCID: PMC6562440 DOI: 10.3390/cancers11050646] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second most common cause of cancer-related deaths among women worldwide. It is a heterogeneous disease with four major molecular subtypes. One of the subtypes, human epidermal growth factor receptor 2 (HER2)-enriched (HER2-positive) is characterized by the absence of estrogen and progesterone receptors and overexpression of HER2 receptor, and accounts for 15–20% of all breast cancers. Despite the anti-HER2 and cytotoxic chemotherapy, HER2 subtype is an aggressive disease with significant mortality. Recent advances in molecular biology techniques, including gene expression profiling, proteomics, and microRNA analysis, have been extensively used to explore the underlying mechanisms behind human breast carcinogenesis and metastasis including HER2-positive breast cancer, paving the way for developing new targeted therapies. This review focuses on recent advances on gene expression and miRNA status in HER2-positive breast cancer.
Collapse
|