1
|
Vaddi DR, Piao L, Khan SA, Wang N, Prabhakar NR, Nanduri J. Correction: Hypoxia induced hERG trafficking defect linked to cell cycle arrest in SH-SY5Y cells. PLoS One 2024; 19:e0297301. [PMID: 38206933 PMCID: PMC10783753 DOI: 10.1371/journal.pone.0297301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0215905.].
Collapse
|
2
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Lukasiak A, Richter-Laskowska M, Trybek P, Ejfler M, Opałka M, Wardejn S, Delfino DV. Potassium Channels, Glucose Metabolism and Glycosylation in Cancer Cells. Int J Mol Sci 2023; 24:ijms24097942. [PMID: 37175655 PMCID: PMC10178682 DOI: 10.3390/ijms24097942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Potassium channels emerge as one of the crucial groups of proteins that shape the biology of cancer cells. Their involvement in processes like cell growth, migration, or electric signaling, seems obvious. However, the relationship between the function of K+ channels, glucose metabolism, and cancer glycome appears much more intriguing. Among the typical hallmarks of cancer, one can mention the switch to aerobic glycolysis as the most favorable mechanism for glucose metabolism and glycome alterations. This review outlines the interconnections between the expression and activity of potassium channels, carbohydrate metabolism, and altered glycosylation in cancer cells, which have not been broadly discussed in the literature hitherto. Moreover, we propose the potential mediators for the described relations (e.g., enzymes, microRNAs) and the novel promising directions (e.g., glycans-orinented drugs) for further research.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Lukasiak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Monika Richter-Laskowska
- The Centre for Biomedical Engineering, Łukasiewicz Research Network-Krakow Institute of Technology, 30-418 Krakow, Poland
| | - Paulina Trybek
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Maciej Ejfler
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Maciej Opałka
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Sonia Wardejn
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| |
Collapse
|
3
|
Xia C, Liu C, Ren S, Cai Y, Zhang Q, Xia C. Potassium channels, tumorigenesis and targeted drugs. Biomed Pharmacother 2023; 162:114673. [PMID: 37031494 DOI: 10.1016/j.biopha.2023.114673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
Potassium channels play an important role in human physiological function. Recently, various molecular mechanisms have implicated abnormal functioning of potassium channels in the proliferation, migration, invasion, apoptosis, and cancer stem cell phenotype formation. Potassium channels also mediate the association of tumor cells with the tumor microenvironment. Meanwhile, potassium channels are important targets for cancer chemotherapy. A variety of drugs exert anti-cancer effects by modulating potassium channels in tumor cells. Therefore, there is a need to understand how potassium channels participate in tumor development and progression, which could reveal new, novel targets for cancer diagnosis and treatment. This review summarizes the roles of voltage-gated potassium channels, calcium-activated potassium channels, inwardly rectifying potassium channels, and two-pore domain potassium channels in tumorigenesis and the underlying mechanism of potassium channel-targeted drugs. Therefore, the study lays the foundation for rational and effective drug design and individualized clinical therapeutics.
Collapse
Affiliation(s)
- Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China.
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
4
|
Hypoxia-related gene signature for predicting LUAD patients' prognosis and immune microenvironment. Cytokine 2022; 152:155820. [PMID: 35176657 DOI: 10.1016/j.cyto.2022.155820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 12/11/2022]
Abstract
Lung adenocarcinoma (LUAD) is a prevalent lung cancer histology with high morbidity and mortality. Moreover, assessment approaches for patients' prognoses are still not effective. Based on mRNA expression and clinical data from the Cancer Genome Atlas (TCGA)-LUAD data set, we utilized hypoxia-related gene set in MsigDB database to identify hypoxia-related differentially expressed genes (DEGs). On the basis of levels of hypoxia-related DEGs, K-means consensus clustering was introduced to divide LUAD patients into subgroups. After hypoxia-related DEGs were analyzed through univariate, Lasso and multivariate Cox regression analyses, 6 of them were determined to be used for evaluating LUAD patients' prognostic signature. With median risk score obtained from hypoxia-related gene signature as threshold, LUAD patients were divided into high- and low-risk groups. Besides, Kaplan-Meier curves, receiver operator characteristic (ROC) curves, univariate and multivariate Cox regression analyses verified that hypoxia-related gene signature was an important prognostic factor independent of clinical features. Gene set enrichment analysis (GSEA) displayed that pathways which showed differences between high- and low-risk groups in activation of pentose-phosphate pathway and p53 signaling pathway. CIBERSORT was utilized to assess infiltration level of each immune cell from two groups, indicating the differences in infiltration abundance of Plasma cells, T cells CD4+ memory activated and Macrophages M1 cells between high- and low-risk groups. We drew a nomogram for predicting one-, three- and five-year survival of LUAD patients following risk scores of hypoxia-related gene signature and six clinical factors. Calibration curves showed a high fit between survival predicted by nomogram and actual survival. In conclusion, hypoxia-related gene signature can be introduced for predicting LUAD patients' prognosis and assessment of the patients' immune microenvironment, guiding clinicians to make appropriate decisions during diagnosis and treatment of LUAD patients.
Collapse
|
5
|
Barreca MM, Zichittella C, Alessandro R, Conigliaro A. Hypoxia-Induced Non-Coding RNAs Controlling Cell Viability in Cancer. Int J Mol Sci 2021; 22:ijms22041857. [PMID: 33673376 PMCID: PMC7918432 DOI: 10.3390/ijms22041857] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs’ activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators in the establishment of hypoxic response, playing important roles in regulating hypoxic gene expression at the transcriptional, post-transcriptional, translational, and posttranslational levels. Here, we review recent findings on the different roles of hypoxia-induced ncRNAs in cancer focusing on the data that revealed their involvement in tumour growth.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Chiara Zichittella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Correspondence:
| |
Collapse
|
6
|
Girault A, Ahidouch A, Ouadid-Ahidouch H. Roles for Ca 2+ and K + channels in cancer cells exposed to the hypoxic tumour microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118644. [PMID: 31931022 DOI: 10.1016/j.bbamcr.2020.118644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
For twenty years, ion channels have been studied in cancer progression. Several information have been collected about their involvement in cancer cellular processes like cell proliferation, motility and their participation in tumour progression using in-vivo models. Tumour microenvironment is currently the focus of many researches and the highlighting of the relationship between cancer cells and surrounding elements, is expanding. One of the major physic-chemical parameter involved in tumour progression is the hypoxia conditions observed in solid cancer. Due to their position on the cell membrane, ion channels are good candidates to transduce or to be modulated by environmental modifications. Until now, few reports have been interested in the modification of ion channel activities or expression in this context, compared to other pathological situations such as ischemia reperfusion. The aim of our review is to summarize the current knowledge about the calcium and potassium channels properties in the context of hypoxia in tumours. This review could pave the way to orientate new studies around this exciting field to obtain new potential therapeutic approaches.
Collapse
Affiliation(s)
- Alban Girault
- Université de Picardie Jules Verne, UFR des Sciences, Laboratoire de Physiologie Cellulaire et Moléculaire (EA 4667), Amiens, France
| | - Ahmed Ahidouch
- Université de Picardie Jules Verne, UFR des Sciences, Laboratoire de Physiologie Cellulaire et Moléculaire (EA 4667), Amiens, France; Université Ibn Zohr, Faculté des sciences, Département de Biologie, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Université de Picardie Jules Verne, UFR des Sciences, Laboratoire de Physiologie Cellulaire et Moléculaire (EA 4667), Amiens, France.
| |
Collapse
|