1
|
Vélez-Trujillo L, Carisio L, Popiela E, Straub L, Tosi S. Romance in peril: A common pesticide impairs mating behaviours and male fertility of solitary bees (Osmiabicornis). CHEMOSPHERE 2025; 377:144335. [PMID: 40209421 DOI: 10.1016/j.chemosphere.2025.144335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 04/12/2025]
Abstract
Mating behaviour and fertility are strong selective forces, driving the reproductive trends of animals. Mating disorders may therefore contribute to the recent decline in insect and pollinators health worldwide. While the impact of pesticides on pollinators is widely considered as a driving factor for reducing pollinators health, their effect on mating behaviour and male fertility remains widely overlooked. Here, we assessed the effects of field-realistic exposure to a common pesticide used as a neonicotinoid substitute worldwide, sulfoxaflor, on the behaviour and male physiology of the solitary bee, Osmia bicornis. We measured a variety of parameters focusing on behaviours occurring before, and during mating, as well as sperm quantity. For the first time, we demonstrate that short-term chronic, field-realistic exposure to a common pesticide reduced pre-copulatory display (-36 %) and sounds (-27 %), increased the number of copulations (+110 %) and the mating duration (+166 %), while finally reducing sperm quantity (-25 %) and mating success (-43 %). Our research raises considerable concern on the impact of field-realistic, low sublethal pesticide levels on the fertility and reproductive success of pollinators. Assessing the impact of pesticides on fitness parameters and implementing more sustainable agricultural solutions would allow mitigating the ongoing threat of pesticide pollution on wild insect populations and the broader environment.
Collapse
Affiliation(s)
- Luis Vélez-Trujillo
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | - Luca Carisio
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy; Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Ewa Popiela
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy.
| |
Collapse
|
2
|
Porras MF, Raygoza Garay JA, Brought M, López-Londoño T, Chautá A, Crone M, Rajotte EG, Phan N, Joshi NK, Peter K, Biddinger D. Fungicide ingestion reduces net energy gain and microbiome diversity of the solitary mason bee. Sci Rep 2024; 14:3229. [PMID: 38332135 PMCID: PMC10853529 DOI: 10.1038/s41598-024-53935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Fungicides are frequently used during tree fruit bloom and can threaten insect pollinators. However, little is known about how non-honey bee pollinators such as the solitary bee, Osmia cornifrons, respond to contact and systemic fungicides commonly used in apple production during bloom. This knowledge gap limits regulatory decisions that determine safe concentrations and timing for fungicide spraying. We evaluated the effects of two contact fungicides (captan and mancozeb) and four translaminar/plant systemic fungicides (cyprodinil, myclobutanil, penthiopyrad, and trifloxystrobin) on larval weight gain, survival, sex ratio, and bacterial diversity. This assessment was carried out using chronic oral ingestion bioassays where pollen provisions were treated with three doses based on the currently recommended field use dose (1X), half dose (0.5X), and low dose (0.1X). Mancozeb and penthiopyrad significantly reduced larval weight and survival at all doses. We then sequenced the 16S gene to characterize the larvae bacteriome of mancozeb, the fungicide that caused the highest mortality. We found that larvae fed on mancozeb-treated pollen carried significantly lower bacterial diversity and abundance. Our laboratory results suggest that some of these fungicides can be particularly harmful to the health of O. cornifrons when sprayed during bloom. This information is relevant for future management decisions about the sustainable use of fruit tree crop protection products and informing regulatory processes that aim to protect pollinators.
Collapse
Affiliation(s)
- Mitzy F Porras
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg, University Park, USA.
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA.
| | - Juan Antonio Raygoza Garay
- Department of Communication Sciences and Disorders, Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Malachi Brought
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg, University Park, USA
| | - Tomas López-Londoño
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA16802, USA
| | - Alexander Chautá
- Department of Ecology, Cornell University, Ithaca, NY, 14850, USA
| | - Makaylee Crone
- Center for Pollinator Research, Intercollege Graduate Program in Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
| | - Edwin G Rajotte
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg, University Park, USA
| | - Ngoc Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Neelendra K Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kari Peter
- Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Pennsylvania State University, 290 University Dr., Biglerville, PA, 17307, USA
| | - David Biddinger
- Department of Entomology, Fruit Research and Extension Center, 290 University Dr., Biglerville, PA, 17307, USA
| |
Collapse
|
3
|
Kline O, Phan NT, Porras MF, Chavana J, Little CZ, Stemet L, Acharya RS, Biddinger DJ, Reddy GVP, Rajotte EG, Joshi NK. Biology, Genetic Diversity, and Conservation of Wild Bees in Tree Fruit Orchards. BIOLOGY 2022; 12:31. [PMID: 36671724 PMCID: PMC9854918 DOI: 10.3390/biology12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Different species of bees provide essential ecosystem services by pollinating various agricultural crops, including tree fruits. Many fruits and nuts depend on insect pollination, primarily by wild and managed bees. In different geographical regions where orchard crops are grown, fruit growers rely on wild bees in the farmscape and use orchard bees as alternative pollinators. Orchard crops such as apples, pears, plums, apricots, etc., are mass-flowering crops and attract many different bee species during their bloom period. Many bee species found in orchards emerge from overwintering as the fruit trees start flowering in spring, and the active duration of these bees aligns very closely with the blooming time of fruit trees. In addition, most of the bees in orchards are short-range foragers and tend to stay close to the fruit crops. However, the importance of orchard bee communities is not well understood, and many challenges in maintaining their populations remain. This comprehensive review paper summarizes the different types of bees commonly found in tree fruit orchards in the fruit-growing regions of the United States, their bio-ecology, and genetic diversity. Additionally, recommendations for the management of orchard bees, different strategies for protecting them from multiple stressors, and providing suitable on-farm nesting and floral resource habitats for propagation and conservation are discussed.
Collapse
Affiliation(s)
- Olivia Kline
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ngoc T. Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Vietnam
| | - Mitzy F. Porras
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua Chavana
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Coleman Z. Little
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | - Lilia Stemet
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roshani S. Acharya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - David J. Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA
| | - Gadi V. P. Reddy
- USDA-ARS-Southern Insect Management Research Unite, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Boff S, Conrad T, Raizer J, Wehrhahn M, Bayer M, Friedel A, Theodorou P, Schmitt T, Lupi D. Low toxicity crop fungicide (fenbuconazole) impacts reproductive male quality signals leading to a reduction of mating success in a wild solitary bee. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Samuel Boff
- University of Würzburg, Biocentre Animal Ecology and Tropical Biology Würzburg Germany
- University of Milan Department of Food, Environmental and Nutritional Sciences Milan Italy
| | - Taina Conrad
- University of Bayreuth Department of Evolutionary Animal Ecology Bayreuth Germany
| | - Josué Raizer
- Federal University of Grande Dourados Faculty of Biology and Environmental Sciences Dourados Brazil
| | - Marten Wehrhahn
- University of Würzburg, Biocentre Animal Ecology and Tropical Biology Würzburg Germany
| | - Melis Bayer
- Ludwig Maximillians University Department of Neurobiology Munich Germany
| | - Anna Friedel
- Martin Luther University Halle‐Wittenberg Institute of Biology, General Zoology Halle (Saale) Germany
| | - Panagiotis Theodorou
- Martin Luther University Halle‐Wittenberg Institute of Biology, General Zoology Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Thomas Schmitt
- University of Würzburg, Biocentre Animal Ecology and Tropical Biology Würzburg Germany
| | - Daniela Lupi
- University of Milan Department of Food, Environmental and Nutritional Sciences Milan Italy
| |
Collapse
|
5
|
Frahnert KS, Seidelmann K. Individual Scent-Marks of Nest Entrances in the Solitary Bee, Osmia cornuta (Hymenoptera: Apoidea). INSECTS 2021; 12:insects12090843. [PMID: 34564283 PMCID: PMC8466334 DOI: 10.3390/insects12090843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
The ability to recognize the own nest is a basic skill in nest constructing solitary bees. Osmia cornuta females use a dual mechanism of visual orientation to approach a nest and olfactory verification of the tube when entering it. Occupied tubular cavities were steadily marked by the resident female. Nest marking substances originate from Dufour's gland and cuticle, enriched by external volatiles. Scent tags were dominated by alkanes and alkenes in a species-specific mixture enriched by small amounts of fatty acid esters, alcohols, and aldehydes. The individual nest tags are sufficiently variable but do not match perfectly with the nesting female. Furthermore, tags are not consistent over time, although females continue in marking. Besides the correct position of the entrance in space, bees have to learn also the bouquet of the used cavity and update their internal template at each visit to recognize their own nest by its actual smell. Due to the dominance of the species-specific hydrocarbon pattern, nest marks may function not only as an occupied sign but may also provide information on the species affiliation and constitution of the nest owner.
Collapse
Affiliation(s)
| | - Karsten Seidelmann
- Abteilung Tierphysiologie, Institut für Biologie/Zoologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, D-06099 Halle, Germany
- Correspondence:
| |
Collapse
|
6
|
Kathe E, Seidelmann K, Lewkowski O, Le Conte Y, Erler S. Changes in chemical cues of Melissococcus plutonius infected honey bee larvae. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00339-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractEuropean foulbrood (EFB), caused by Melissococcus plutonius, is a globally distributed bacterial brood disease affecting Apis mellifera larvae. There is some evidence, even if under debate, that spreading of the disease within the colony is prevented by worker bees performing hygienic behaviour, including detection and removal of infected larvae. Olfactory cues (brood pheromones, signature mixtures, diagnostic substances) emitted by infected individuals may play a central role for hygienic bees to initiate the disease-specific behaviour. However, the mechanisms of cue detection and brood removal, causing hygienic behaviour in EFB affected colonies, are poorly understood. Here, coupled gas chromatography-mass spectrometry (GC–MS) was used to detect disease-specific substances, changes in cuticular hydrocarbon (CHC) profiles, and brood ester pheromones (BEPs) of honey bee larvae artificially infected with M. plutonius. Although no diagnostic substances were found in significant quantities, discriminant analysis revealed specific differences in CHC and BEP profiles of infected and healthy larvae. β-Ocimene, a volatile brood pheromone related to starvation and hygienic behaviour, was present in all larvae with highest quantities in healthy young larvae; whereas oleic acid, a non-volatile necromone, was present only in old infected larvae. Furthermore, γ-octalactone (newly discovered in A. mellifera in this study) was detectable in trace amounts only in infected larvae. We propose that the deviation from the olfactory profile of healthy brood is supposed to trigger hygienic behaviour in worker bees. To confirm the relevance of change in the chemical bouquet (CHCs, BEPs, γ-octalactone, etc.), a field colony bioassay is needed, using healthy brood and hygienic bees to determine if bouquet changes elicit hygienic behaviour.
Collapse
|
7
|
Van Eeckhoven J, Duncan EJ. Mating status and the evolution of eusociality: Oogenesis is independent of mating status in the solitary bee Osmia bicornis. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104003. [PMID: 31883996 DOI: 10.1016/j.jinsphys.2019.104003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The fundamental trait underlying eusociality is the reproductive division of labour. In honeybees (Apis mellifera), queens lay eggs while workers forage, defend and care for brood. The division of labour is maintained by pheromones including queen mandibular pheromone (QMP) produced by the queen. QMP constrains reproduction in adult honeybee workers, but in the absence of their queen workers can activate their ovaries and, although they cannot mate, they lay haploid male eggs. The reproductive ground plan hypothesis suggests that reproductive constraint may have evolved by co-opting mechanisms of reproductive control in solitary ancestors. In many insects mating is required to activate or accelerate oogenesis. Here, we use the solitary bee Osmia bicornis (Megachilidae) to test whether reproductive constraint evolved from ancestral control of reproduction by mating status. We present a structural study of the O. bicornis ovary, and compare key stages of oogenesis with honeybee workers. Importantly, we show that mating does not affect any aspect of the reproductive physiology of O. bicornis. We therefore conclude that mechanisms governing reproductive constraint in honeybees were unlikely to have been co-opted from mechanisms pertaining to mating status.
Collapse
Affiliation(s)
- Jens Van Eeckhoven
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Elizabeth J Duncan
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|